scholarly journals Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

Author(s):  
Dongming Zhu ◽  
Kang N. Lee ◽  
Robert A. Miller

Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protections of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 784 ◽  
Author(s):  
Robert Vaßen ◽  
Emine Bakan ◽  
Caren Gatzen ◽  
Seongwong Kim ◽  
Daniel Emil Mack ◽  
...  

Environmental barrier coatings (EBCs) are essential to protect ceramic matrix composites against water vapor recession in typical gas turbine environments. Both oxide and non-oxide-based ceramic matrix composites (CMCs) need such coatings as they show only a limited stability. As the thermal expansion coefficients are quite different between the two CMCs, the suitable EBC materials for both applications are different. In the paper examples of EBCs for both types of CMCs are presented. In case of EBCs for oxide-based CMCs, the limited strength of the CMC leads to damage of the surface if standard grit-blasting techniques are used. Only in the case of oxide-based CMCs different processes as laser ablation have been used to optimize the surface topography. Another result for many EBCs for oxide-based CMC is the possibility to deposit them by standard atmospheric plasma spraying (APS) as crystalline coatings. Hence, in case of these coatings only the APS process will be described. For the EBCs for non-oxide CMCs the state-of-the-art materials are rare earth or yttrium silicates. Here the major challenge is to obtain dense and crystalline coatings. While for the Y2SiO5 a promising microstructure could be obtained by a heat-treatment of an APS coating, this was not the case for Yb2Si2O7. Here also other thermal spray processes as high velocity oxygen fuel (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) are used and the results described mainly with respect to crystallinity and porosity.


Author(s):  
David C. Faucett ◽  
Sung R. Choi

CMAS (Calcium-Magnesium-Aluminosilicate) has shown to induce some deleterious effects on yittria-stabilized-zirconia (YSZ) based thermal barrier coatings (TBCs) of hot section components of aeroengines. The effects were shown to be dependent on the types and operating conditions of engines/components. The work presented here explored how CMAS would affect ceramic matrix composites (CMCs) in terms of strength degradation. Four different, gas-turbine grade CMCs were utilized including two types of MI SiC/SiCs and other two types of oxides/oxides (N720/aluminisilicate and N720/alumina). Test specimens in a simple flexure configuration were CMAS-treated at 1200 °C in air under either isothermal or thermal cycling condition. The effects of CMAS were quantified via residual strengths of treated test specimens. Strength degradation with respect to as-received strengths ranged from 10 to 20% depending on the types of CMCs. It was further observed that significant degradation of strength up to 90% occurred in an oxide/oxide CMC when sodium sulfate was added to CMAS.


Sign in / Sign up

Export Citation Format

Share Document