Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane

Author(s):  
D. G. Knost ◽  
K. A. Thole

In gas turbine development, the direction has been towards higher turbine inlet temperatures to increase the work output and thermal efficiency. This extreme environment can significantly impact component life. One means of preventing component burnout in the turbine is to effectively use film-cooling whereby coolant is extracted from the compressor and injected through component surfaces. One such surface is the endwall of the first stage nozzle guide vane. This paper presents measurements of two endwall film-cooling hole patterns combined with cooling from a flush slot that simulates leakage flow between the combustor and turbine sections. Adiabatic effectiveness measurements showed the slot flow adequately cooled portions of the endwall. Measurements also showed two very difficult regions to cool including the leading edge and pressure side-endwall junction. As the momentum flux ratios were increased for the film-cooling jets in the stagnation region, the coolant was shown to impact the vane and wash down onto the endwall surface. Along the pressure side of the vane in the upstream portion of the passage, the jets were shown to separate from the surface rather than penetrate to the pressure surface. In the downstream portion of the passage, the jets along the pressure side of the vane were shown to impact the vane thereby eliminating any uncooled regions at the junction. The measurements were also combined with computations to show the importance of considering the trajectory of the flow in the near-wall region, which can be highly influenced by slot leakage flows.

2005 ◽  
Vol 127 (2) ◽  
pp. 297-305 ◽  
Author(s):  
D. G. Knost ◽  
K. A. Thole

In gas turbine development, the direction has been toward higher turbine inlet temperatures to increase the work output and thermal efficiency. This extreme environment can significantly impact component life. One means of preventing component burnout in the turbine is to effectively use film-cooling whereby coolant is extracted from the compressor and injected through component surfaces. One such surface is the endwall of the first-stage nozzle guide vane. This paper presents measurements of two endwall film-cooling hole patterns combined with cooling from a flush slot that simulates leakage flow between the combustor and turbine sections. Adiabatic effectiveness measurements showed the slot flow adequately cooled portions of the endwall. Measurements also showed two very difficult regions to cool, including the leading edge and pressure side-endwall junction. As the momentum flux ratios were increased for the film-cooling jets in the stagnation region, the coolant was shown to impact the vane and wash down onto the endwall surface. Along the pressure side of the vane in the upstream portion of the passage, the jets were shown to separate from the surface rather than penetrate to the pressure surface. In the downstream portion of the passage, the jets along the pressure side of the vane were shown to impact the vane thereby eliminating any uncooled regions at the junction. The measurements were also combined with computations to show the importance of considering the trajectory of the flow in the near-wall region, which can be highly influenced by slot leakage flows.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Author(s):  
Joshua B. Anderson ◽  
James R. Winka ◽  
David G. Bogard ◽  
Michael E. Crawford

The leading edge of a turbine vane is subject to some of the highest temperature loading within an engine, and an accurate understanding of leading edge film coolant behavior is essential for modern engine design. Although there have been many investigations of the adiabatic effectiveness for showerhead film cooling of a vane leading edge region, there have been no previous studies in which individual rows of the showerhead were tested with the explicit intent of validating superposition models. For the current investigation, a series of adiabatic effectiveness experiments were performed with a five-row and three-row showerhead. The experiments were repeated separately with each individual row of holes active. This allowed evaluation of superposition methods on both the suction side of the vane, which was moderately convex, and the pressure side of the vane, which was mildly concave. Superposition was found to accurately predict performance on the suction side of the vane at lower momentum flux ratios, but not at higher momentum flux ratios. On the pressure side of the vane the superposition predictions were consistently lower than measured values, with significant errors occurring at the higher momentum flux ratios. Reasons for the under-prediction by superposition analysis are presented.


Author(s):  
Sai Shrinivas Sreedharan ◽  
Danesh K. Tafti

Computational studies are carried out using Large Eddy Simulations (LES) to investigate the effect of coolant to mainstream blowing ratio in a leading edge region of a film cooled vane. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R. = 0.5. However, further downstream the larger mass of coolant injected at higher blowing ratios, in spite of the larger jet penetration and dilution, increases the effectiveness with blowing ratio.


2011 ◽  
Vol 383-390 ◽  
pp. 5553-5560
Author(s):  
Shao Hua Li ◽  
Hong Wei Qu ◽  
Mei Li Wang ◽  
Ting Ting Guo

The gas turbine blade was studied on the condition that the mainstream velocity was 10m/s and the Renolds number based on the chord length of the blade was 160000.The Hot-film anemometer was used to measure the two-dimension speed distribution along the downstream of the film cooling holes on the suction side and the pressure side. The conclusions are as follows: When the blowing ratio of the suction side and the pressure side increasing, the the mainstream and the jet injection mixing center raising. Entrainment flow occurs at the position where the blade surface with great curvature gradient, simultaneously the mixing flow has a wicked adhere to the wall. The velocity gradient of the u direction that on the suction side increase obviously, also the level of the wall adherence is better than the pressure side. With the x/d increasing, the velocity u that on the pressure side gradually become irregularly, also the secondary flow emerged near the wall region where the curvature is great. The blowing ratio on the suction side has a little influence on velocity v than that on the pressure side.


Author(s):  
Lamyaa A. El-Gabry ◽  
Ranjan Saha ◽  
Jens Fridh ◽  
Torsten Fransson

An experimental study has been performed in a transonic annular sector cascade of nozzle guide vanes to investigate the aerodynamic performance and the interaction between hub film cooling and mainstream flow. The focus of the study is on the endwalls, specifically the interaction between the hub film cooling and the mainstream. Carbon dioxide (CO2) has been supplied to the coolant holes to serve as tracer gas. Measurements of CO2 concentration downstream of the vane trailing edge can be used to visualize the mixing of the coolant flow with the mainstream. Flow field measurements are performed in the downstream plane with a 5-hole probe to characterize the aerodynamics in the vane. Results are presented for the fully cooled and partially cooled vane (only hub cooling) configurations. Data presented at the downstream plane include concentration contour, axial vorticity, velocity vectors, and yaw and pitch angles. From these investigations, secondary flow structures such as the horseshoe vortex, passage vortex, can be identified and show the cooling flow significantly impacts the secondary flow and downstream flow field. The results suggest that there is a region on the pressure side of the vane trailing edge where the coolant concentrations are very low suggesting that the cooling air introduced at the platform upstream of the leading edge does not reach the pressure side endwall, potentially creating a local hotspot.


Author(s):  
Nicholas E. Holgate ◽  
Peter T. Ireland ◽  
Eduardo Romero

Recent advances in experimental methods have allowed researchers to study nozzle guide vane film cooling in the presence of combustor dilution ports and endwall films. The dilution injection creates nonuniformities in temperature, velocity, and turbulence, and an understanding of the vane film cooling performance is complicated by competing influences. In this study, dilution port temperature profiles have been measured in the absence of vane film cooling and compared to film effectiveness measurements in the presence of both films and dilution, illustrating the effects of the dilution port turbulence on film cooling performance. It is found that dilution port injection can create significant effectiveness benefits at the difficult-to-cool vane stagnation region, due to the more turbulent hot mainstream enhancing the mixing of film coolant jets that have left the airfoil surface. Also explored are the implications of endwall film cooling for infrared vane surface temperature measurements. The reduced endwall temperatures reduce the thermal emissions from this surface, so reducing the amount of extraneous radiation reflected from the vane surface where measurements are being made. The results of a detailed calibration show that the maximum local film effectiveness measurement error could be up to 0.05 if this effect were to go unaccounted for.


Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract The first stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics are not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The test section involves an engine-representative combustor-turbine interface geometry, combustor coolant flow and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.


2021 ◽  
pp. 1-54
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract The first stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics are not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The test section involves an engine-representative combustor-turbine interface geometry, combustor coolant flow and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.


2011 ◽  
Vol 383-390 ◽  
pp. 3963-3968
Author(s):  
Shao Hua Li ◽  
Li Mei Du ◽  
Wen Hua Dong ◽  
Ling Zhang

In this paper, a numerical simulation was performed to investigate heat transferring characteristics on the leading edge of a blade with three rows of holes of film-cooling using Realizable k- model. Three rows of holes were located on the suction side leading edge stagnation line and the pressure surface. The difference of the cooling efficiency and the heat transfer of the three rows of holes on the suction side and pressure side were analyzed; the heat transfer and film cooling effectiveness distribution in the region of leading edge are expounded under different momentum rations.The results show that under the same condition, the cooling effectiveness on the pressure side is more obvious than the suction side, but the heat transfer is better on the suction side than the pressure side. The stronger momentum rations are more effective cooling than the heat transfer system.


Sign in / Sign up

Export Citation Format

Share Document