Design Study of a Humidification Tower for the Advanced Humid Air Turbine System

Author(s):  
Hidefumi Araki ◽  
Shinichi Higuchi ◽  
Shinya Marushima ◽  
Shigeo Hatamiya

The AHAT (advanced humid air turbine) system, which can be equipped with a heavy-duty, single-shaft gas turbine, aims at high efficiency equal to that of the HAT system. Instead of an intercooler, a WAC (water atomization cooling) system is used to reduce compressor work. The characteristics of a humidification tower (a saturator), which is used as a humidifier for the AHAT system, were studied. The required packing height and the exit water temperature from the humidification tower were analyzed for five virtual gas turbine systems with different capacities (1MW, 3.2MW, 10MW, 32MW and 100MW) and pressure ratios (π = 8, 12, 16, 20 and 24). Thermal efficiency of the system was compared with that of a simple cycle and a recuperative cycle with and without the WAC system. When the packing height of the humidification tower was changed, the required size varied for the three heat exchangers around the humidification tower (a recuperator, an economizer and an air cooler). The packing height with which the sum total of the size of the packing and these heat exchangers became a minimum was 1m for the lowest pressure ratio case, and 6m for the highest pressure ratio case.

2005 ◽  
Vol 128 (3) ◽  
pp. 543-550 ◽  
Author(s):  
Hidefumi Araki ◽  
Shinichi Higuchi ◽  
Shinya Marushima ◽  
Shigeo Hatamiya

The advanced humid air turbine (AHAT) system, which can be equipped with a heavy-duty, single-shaft gas turbine, aims at high efficiency equal to that of the HAT system. Instead of an intercooler, a WAC (water atomization cooling) system is used to reduce compressor work. The characteristics of a humidification tower (a saturator), which is used as a humidifier for the AHAT system, were studied. The required packing height and the exit water temperature from the humidification tower were analyzed for five virtual gas turbine systems with different capacities (1, 3.2, 10, 32, and 100MW) and pressure ratios (π=8, 12, 16, 20, and 24). Thermal efficiency of the system was compared with that of a simple cycle and a recuperative cycle with and without the WAC system. When the packing height of the humidification tower was changed, the required size varied for the three heat exchangers around the humidification tower (a recuperator, an economizer, and an air cooler). The packing height with which the sum total of the size of the packing and these heat exchangers became a minimum was 1m for the lowest pressure ratio case, and 6m for the highest pressure ratio case.


Author(s):  
Manabu Yagi ◽  
Hidefumi Araki ◽  
Hisato Tagawa ◽  
Tomomi Koganezawa ◽  
Chihiro Myoren ◽  
...  

A 40 MW-class test facility has been constructed to verify practicability of applying the advanced humid air turbine (AHAT) system to a heavy-duty gas turbine. Verification tests have been carried out from January 2012, and interaction effects between the key components were established. First, water atomization cooling (WAC) was confirmed to contribute to both increased mass flow rate and pressure ratio for the axial-flow compressor. The good agreement between measured and calculated temperatures at the compressor discharge was also confirmed. These results demonstrated the accuracy of the developed prediction model for the WAC. Second, a control method that realized both flame stability and low nitrogen oxides (NOx) emissions was verified. Although the power output and air humidity were lower than the rated values, NOx concentration was about 10 ppm. Finally, a hybrid nozzle cooling system, which utilized both compressor discharged air and humid air, was developed and tested. The metal surface temperatures of the first stage nozzles were measured, and they were kept under the permissible metal temperature. The measured temperatures on the metal surface reasonably corresponded with calculation results.


Author(s):  
Yunhan Xiao ◽  
Rumou Lin ◽  
Ruixian Cai

The humid air turbine (HAT) cycle, proposed by Mori et al. and recently developed by Rao et al. at Flour Daniel, has been identified as a promising way to generate electric power at high efficiency, low cost and simple system relative to combined cycle and steam injection gas turbine cycle. It has aroused considerable interest. Thermodynamic means, such as intercooling, regeneration, heat recovery at low temperature and especially non-isothermal vaporisation by multi-phase and multi-component, are adopted in HAT cycle to reduce the external and internal exergy losses relative to the energy conversion system. In addition to the parameter analysis and the technical aspect of HAT cycle, there is also a strong need for “systems” research to identify the best ways, of configuring HAT cycle to integrate all the thermodynamic advantages more efficiently to achieve high performance. The key units in HAT cycle are analyzed thermodynamically and modelled in this paper. The superstructure containing all potentially highly efficient flowsheeting alternatives is also proposed. The system optimization of the HAT cycle is thus represented by a nonlinear programming problem. The problem is solved automatically by a successive quadratic algorithm to select the optimal configuration and optimal design parameters for the HAT cycle. The results have shown that the configuration of the HAT cycle currently adopted is not optimal for efficiency and/or specific power, and the current pressure ratio are too high to be favorable for highest performance. Based on the current technical practice, the optimal flowsheeting for thermal efficiency can reach 60.33% when TIT=1533K, while the optimal flowsheeting for specific power can achieve 1300kW/kg/s air for TIT at 1533K. The optimal flowsheeting configuration is compared favorably with the other existing ones.


2016 ◽  
Author(s):  
Jinwei Chen ◽  
Di Huang ◽  
Huisheng Zhang ◽  
Shilie Weng

Nowadays, the issues of the energy and environment become more and more serious with the demand of energy increasing drastically. The advanced gas turbine cycles provide the opportunities to solve these issues. Humid air turbine (HAT) cycle, which is one of the most promising cycles with high efficiency, low emissions and low unit investment costs, is a prominent representation of the advanced gas turbine cycles. In this paper, an aero-derivative three-shaft gas turbine was converted to the HAT cycle. The aero-derivative is one of the most efficient simple cycles, whose system efficiency can reach 40%. And it is an effective solution to transform the advanced technology from the aeronautical filed to the industrial application. In order to investigate the performance of the HAT cycle, the saturator model was established based on the saturation curve and the saturator working line. Additionally, it was validated that the saturator model was consistent with the steady state experimental results very well. The maximum error of the outlet air temperature is less than 0.8% and the maximum error of the outlet air humidity is less than 1.9%. Three different HAT cycle systems were designed and simulated on the MATLAB platform. The thermodynamic performance of the three HAT systems on the design point shows that case 2 is the better one, which means that the aftercooler does not have obvious benefits for system performance and NOx emissions. Then, the effects of the ambient temperature on the case 2 and simple cycle were investigated. The results show that the HAT cycle has the more favorable off-design performance than the simple cycle when the ambient temperature is changed.


Author(s):  
Hidetoshi Kuroki ◽  
Shigeo Hatamiya ◽  
Takanori Shibata ◽  
Tomomi Koganezawa ◽  
Nobuaki Kizuka ◽  
...  

The advanced humid air turbine (AHAT) system improves the thermal efficiency of gas turbine power generation by using a humidifier, a water atomization cooling (WAC) system, and a heat recovery system, thus eliminating the need for an extremely high firing temperature and pressure ratio. The following elemental technologies have been developed to realize the AHAT system: (1) a broad working range and high-efficiency compressor that utilizes the WAC system to reduce compression work, (2) turbine blade cooling techniques that can withstand high heat flux due to high-humidity working gas, and (3) a combustor that achieves both low NOx emissions and a stable flame condition with high-humidity air. A gas turbine equipped with a two-stage radial compressor (with a pressure ratio of 8), two-stage axial turbine, and a reverse-flow type of single-can combustor has been developed based on the elemental technologies described above. A pilot plant that consists of a gas turbine generator, recuperator, humidification tower, water recovery system, WAC system, economizer, and other components is planned to be constructed, with testing slated to begin in October 2006 to validate the performance and reliability of the AHAT system. The expected performance is as follows: thermal efficiency of 43% (LHV), output of 3.6MW, and NOx emissions of less than 10ppm at 15% O2. This paper introduces the elemental technologies and the pilot plant to be built for the AHAT system.


Author(s):  
Mortaza Yari

The evaporative gas turbine cycle is a new high-efficiency power cycle that has reached the pilot plant testing stage. The latest configuration proposed for this cycle is known as part flow evaporative gas turbine cycle (PEvGT) in which humidification is combined with steam injection. Having advantages of both steam injected and humid air cycles, it is regarded as a very desirable plant for future. The aim of this work is to investigate the economic performance of the PEvGT cycles: PEvGT and PEvGT-IC (Intercooled PEvGT cycle), based on the thermoeconomic analysis. The results are presented and the influence of the several parameters is discussed: pressure ratio, part-flow humidification rate and the cycle configuration. Also the thermoeconomic optimization of the cycles have been done and discussed.


Author(s):  
Hidetoshi Kuroki ◽  
Takanori Shibata ◽  
Tomomi Koganezawa ◽  
Nobuaki Kizuka ◽  
Shigeo Hatamiya ◽  
...  

The Advanced Humid Air Turbine (AHAT) system improves the thermal efficiency of gas turbine power generation by using a humidifier, a Water Atomization Cooling (WAC) system, and a heat recovery system, thus eliminating the need for an extremely high firing temperature and pressure ratio. The following elemental technologies have been developed to realize the AHAT system: (1) a broad working range and high-efficiency compressor that utilizes the WAC system to reduce compression work, (2) turbine blade cooling techniques that can withstand high heat flux due to high-humidity working gas, and (3) a combustor that achieves both low NOx emissions and a stable flame condition with high-humidity air. A gas turbine equipped with a two-stage radial compressor (with a pressure ratio of 8), two-stage axial turbine, and a reverse-flow type of single-can combustor has been developed based on the elemental technologies described above. A pilot plant that consists of a gas turbine generator, recuperator, humidification tower, water recovery system, WAC system, economizer, and other components is planned to be constructed, with testing slated to begin in October 2006 to validate the performance and reliability of the AHAT system. The expected performance is as follows: thermal efficiency of 43% (LHV), output of 3.6 MW, and NOx emissions of less than 10 ppm at 15% O2. This paper introduces the elemental technologies and the pilot plant to be built for the AHAT system.


Author(s):  
Manabu Yagi ◽  
Hidefumi Araki ◽  
Hisato Tagawa ◽  
Tomomi Koganezawa ◽  
Chihiro Myoren ◽  
...  

A 40MW-class test facility has been constructed to verify practicability of applying the advanced humid air turbine (AHAT) system to a heavy-duty gas turbine. Verification tests have been carried out from January 2012, and interaction effects between the key components were established. First, water atomization cooling (WAC) was confirmed to contribute to both increased mass flow rate and pressure ratio for the axial flow compressor. The good agreement between measured and calculated temperatures at the compressor discharge was also confirmed. These results demonstrated the accuracy of the developed prediction model for the WAC. Second, a control method which realized both flame stability and low NOx emissions was verified. Although the power output and air humidity were lower than the rated values, NOx concentration was about 10 ppm. Finally, a hybrid nozzle cooling system, which utilized both compressor discharged air and humid air, was developed and tested. The metal surface temperatures of the first stage nozzles were measured, and they were kept under the permissible metal temperature. The measured temperatures on the metal surface reasonably corresponded with calculation results.


Author(s):  
Shinichi Higuchi ◽  
Tomomi Koganezawa ◽  
Yasuhiro Horiuchi ◽  
Hidefumi Araki ◽  
Takanori Shibata ◽  
...  

The AHAT (advanced humid air turbine) system is based on a recuperated cycle using high-humidity air. This system improves thermal efficiency by using the high-humidity air as working gas. After many studies and elemental tests, a 4MW-class pilot plant was planned and built in order to verify feasibility of the AHAT system from the viewpoints of heat cycle characteristic and engineering. This plant consists of a gas turbine, a recuperator, a humidification tower, a water recovery system, an economizer, and other components. The gas turbine consists of a two-stage centrifugal compressor (pressure ratio of 8), a reverse-flow type single-can combustor, and a two-stage axial-flow turbine. In overall performance tests, the plant thermal efficiency exceeded 40%LHV.


Author(s):  
Hidefumi Araki ◽  
Shinichi Higuchi ◽  
Tomomi Koganezawa ◽  
Shinya Marushima ◽  
Shigeo Hatamiya ◽  
...  

The AHAT (advanced humid air turbine) system has been studied to improve thermal efficiency of gas turbine power generation. This is an original gas turbine power generation system which substitutes the WAC (water atomization cooling) system for the intercooler system of the HAT cycle. A pilot plant was built to verify feasibility of the AHAT system, which is composed of a gas turbine, a humidification tower, a recuperator and a water recovery system. Firstly, characteristics of the humidification tower were examined. The experimental results of the humidification rate agreed with the calculation results within a deviation of 1%. Humidification increased the heat recovery, and the electrical efficiency exceeded 40%. Secondly, characteristics of the spray-type water recovery system were examined. 95% of water consumed by the humidification tower was recovered, and a significant reduction of the make-up water for the HAT cycle was confirmed. Thirdly, concentrations of impurities within the circulating water of the AHAT system were measured when the recovered water was recycled without any purification process.


Sign in / Sign up

Export Citation Format

Share Document