The Design, Development and Evaluation of 3D Aerofoils for High Speed Axial Compressors: Part 2 — Simulation and Comparison With Experiment

Author(s):  
G. Woollatt ◽  
D. Lippett ◽  
P. C. Ivey ◽  
P. Timmis ◽  
B. A. Charnley

The focus of this paper is to report on measurements from and simulation of Cranfield University’s 3-stage high-speed axial compressor test rig. This newly built rig is supported by European Commission funding and has tested a set of conventionally stacked 2D rotor and stator blades (Reference 1). The results were used to evaluate and to assess the performance of several commercially available CFD codes leading to the collaborative design of an advanced three-dimensional blade set. The philosophy behind the advanced design is described. The datum test results show that the state of the art, highly loaded, datum compressor is well matched with limited potential for loss reduction. A comparison is made between the measured results and a series of numerical analyses using the various CFD codes. Although the codes showed reasonable qualitative agreement with each other and the measured data, there were significant differences in the predicted performance of the datum build. Further the codes were unable to grade candidate redesigns consistently on a quantitative basis and therefore increased the difficulty of selecting suitable ‘3d’ features. Generic studies involving sweep, lean and recambering are used to evolve a design philosophy for the advanced three-dimensional design. Over cambering of the end-wall sections, coupled with a suitable stack of the blades, enables the blade count to be reduced. In the presence of a clearance combinations of sweep and lean are used to modify the loading in the clearance gap, thereby influencing the associated losses. The application of three-dimensional features redistributes the flow. The opportunity is therefore taken to rematch the sections based on the predicted results of the CFD codes. The above philosophy is used in the redesign of the datum compressor. Overall characteristics and exit traverse results from the test of the advanced build are compared to those from the datum build.

Author(s):  
Simon Coldrick ◽  
Paul Ivey ◽  
Roger Wells

This paper describes preparatory work towards three dimensional flowfield measurements downstream of the rotor in an industrial, multistage, axial compressor, using a pneumatic pressure probe. The probe is of the steady state four hole cobra probe type. The design manufacture and calibration of the probe is described. CFD calculations have been undertaken in order to assess the feasability of using such a probe in the high speed compressor environment where space is limited. This includes effects of mounting the probe in close proximity to the downstream stator blades and whether it is necessary to adjust the calibration data to compensate for these effects.


1993 ◽  
Vol 115 (2) ◽  
pp. 296-304 ◽  
Author(s):  
M. A. Howard ◽  
S. J. Gallimore

An existing throughflow method for axial compressors, which accounts for the effects of spanwise mixing using a turbulent diffusion model, has been extended to include the viscous shear force on the endwall. The use of a shear force, consistent with a no-slip condition, on the annulus walls in the throughflow calculations allows realistic predictions of the velocity and flow angle profiles near the endwalls. The annulus wall boundary layers are therefore incorporated directly into the throughflow prediction. This eliminates the need for empirical blockage factors or independent annulus boundary layer calculations. The axisymmetric prediction can be further refined by specifying realistic spanwise variations of loss coefficient and deviation to model the three-dimensional endwall effects. The resulting throughflow calculation gives realistic predictions of flow properties across the whole span of a compressor. This is confirmed by comparison with measured data from both low and high-speed multistage machines. The viscous throughflow method has been incorporated into an axial compressor design system. The method predicts the meridional velocity defects in the endwall region and consequently blading can be designed that allows for the increased incidence, and low dynamic head, near the annulus walls.


Author(s):  
M. A. Howard ◽  
S. J. Gallimore

An existing throughflow method for axial compressors, which accounts for the effects of spanwise mixing using a turbulent diffusion model, has been extended to include the viscous shear force on the endwall. The use of a shear force, consistent with a no-slip condition, on the annulus walls in the throughflow calculations allows realistic predictions of the velocity and flow angle profiles near the endwalls. The annulus wall boundary layers are therefore incorporated directly in the throughflow prediction. This eliminates the need for empirical blockage factors or independent annulus boundary layer calculations. The axisymmetric prediction can be further refined by specifying realistic spanwise variations of loss coefficient and deviation to model the three-dimensional endwall effects. The resulting throughflow calculation gives realistic predictions of flow properties across the whole span of a compressor. This is confirmed by comparison with measured data from both low and high speed multi-stage machines. The viscous throughflow method has been incorporated into an axial compressor design system. The method predicts the meridional velocity defects in the endwall region and consequently blading can be designed which allows for the increased incidence, and low dynamic head, near to the annulus walls.


Author(s):  
Steffen Reising ◽  
Heinz-Peter Schiffer

Secondary flows involving cross flow and three-dimensional separation phenomena in modern axial compressors at high stage loading contribute significantly to a reduction in overall efficiency. This two-part paper presents a numerical study on the potential aerodynamic benefits of using non-axisymmetric end walls in an axial compressor, involving both the rotor and the stator row. This first paper describes the sequential profiling of stator end walls in a transonic compressor at several operating points to suppress separation. An automated multi-objective optimizer connected to a 3-D RANS flow solver was used to find the optimal end wall geometries. As a design exercise, the stator hub end wall of Configuration I of the Darmstadt Transonic Compressor was first optimized at design conditions, keeping the shroud end wall constant. This led to an increase in efficiency of 1.8% due to the suppression of the hub-corner stall. However, this was accompanied by an increased area of reverse flow at the casing, which was even more distinct at off-design conditions near stall. The numerical surge limit of the datum axisymmetric design could no longer be reached and was then determined by the new separation close to the stator casing. A subsequent optimization of the shroud end wall was carried out using the improved profiled hub as the initial design. An operating point near stall with a strongly developed separation was chosen for this purpose. The second optimization resulted in a further improvement in the characteristic speed line over the entire off-design region. Although the shroud contour was designed at off-design conditions, the optimization gained an additional 0.03% in efficiency for the design point. The lower surge limit of the datum design could also be reached again, even at higher efficiency and pressure ratios. The investigations showed that end wall profiling in high loaded compressor stators can be considered as a good supplement to 3-D blading to control separation areas and improve the entire component’s characteristics.


Author(s):  
Daniel J. Dorney ◽  
Om P. Sharma ◽  
Karen L. Gundy-Burlet

Axial compressors have inherently unsteady flow fields because of relative motion between rotor and stator airfoils. This relative motion leads to viscous and inviscid (potential) interactions between blade rows. As the number of stages increases in a turbomachine, the buildup of convected wakes can lead to progressively more complex wake/wake and wake/airfoil interactions. Variations in the relative circumferential positions of stators or rotors can change these interactions, leading to different unsteady forcing functions on airfoils and different compressor efficiencies. In addition, as the Mach number increases the interaction between blade rows can be intensified due to potential effects. In the current study an unsteady, quasi-three-dimensional Navier-Stokes analysis has been used to investigate the unsteady aerodynamics of stator clocking in a 1-1/2 stage compressor, typical of back stages used in high-pressure compressors of advanced commercial jet engines. The effects of turbulence have been modeled with both algebraic and two-equation models. The results presented include steady and unsteady surface pressures, efficiencies, boundary layer quantities and turbulence quantities. The main contribution of the current work has been to show that airfoil clocking can produce significant performance variations at the Mach numbers associated with an engine operating environment. In addition, the growth of turbulence has been quantified to aid in the development of models for the multi-stage steady analyses used in design systems.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Alexander Hergt ◽  
Christian Dorfner ◽  
Wolfgang Steinert ◽  
Eberhard Nicke ◽  
Heinz-Adolf Schreiber

Modern methods for axial compressor design are capable of shaping the blade surfaces in a three-dimensional way. Linking these methods with automated optimization techniques provides a major benefit to the design process. The application of nonaxisymmetric contoured endwalls is considered to be very successful in turbine rotors and vanes. Concerning axial compressors, nonaxisymmetric endwalls are still a field of research. This two-part paper presents the recent development of a novel endwall design. A vortex created by a nonaxisymmetric endwall groove acts as an aerodynamic separator, preventing the passage vortex from interacting with the suction side boundary layer. This major impact on the secondary flow results in a significant loss reduction by means of load redistribution, reduction in recirculation areas, and suppressed corner separation. Part I of this paper deals with the endwall design and its compressor application. The resulting flow phenomena and physics are described and analyzed in detail. The second paper presents the detailed experimental and numerical investigation of the developed endwall groove. The measurements carried out at the transonic cascade wind tunnel of DLR in Cologne, demonstrated a considerable influence on the cascade performance. A loss reduction and redistribution of the cascade loading were achieved at the aerodynamic design point, as well as near the stall condition of the cascade. This behavior is well predicted by the numerical simulation. The combined analysis of experimental and numerical flow patterns allows a detailed interpretation and description of the resulting flow phenomena. In this context, high fidelity 3D-Reynolds-averaged Navier–Stokes flow simulations are required to analyze the complex blade and endwall boundary layer interaction.


Author(s):  
Alexander Hergt ◽  
Christian Dorfner ◽  
Wolfgang Steinert ◽  
Eberhard Nicke ◽  
Heinz-Adolf Schreiber

Modern methods for axial compressor design are capable of shaping the blade surfaces in a three dimensional way. Linking these methods with automated optimization techniques provides a major benefit to the design process. The application of non-axisymmetric contoured endwalls is considered to be very successful in turbine rotors and vanes. Concerning axial compressors non-axisymmetric endwalls are still a field of research. This two-part paper presents the recent development of a novel endwall design. A vortex created by a nonaxisymmetric endwall groove acts as an aerodynamic separator, preventing the passage vortex from interacting with the suction side boundary layer. This major impact on the secondary flow results in a significant loss reduction by means of load redistribution, reduction of recirculation areas and suppressed corner separation. Part I of this paper deals with the endwall design and its compressor application. The resulting flow phenomena and physics are described and analysed in detail. The second paper presents the detailed experimental and numerical investigation of the developed endwall groove. The measurements carried out at the transonic cascade wind tunnel of DLR in Cologne, demonstrated a considerable influence on the cascade performance. A loss reduction and redistribution of the cascade loading were achieved at the aerodynamic design point as well as near the stall condition of the cascade. This behaviour is well predicted by the numerical simulation. The combined analysis of experimental and numerical flow patterns allows a detailed interpretation and description of the resulting flow phenomena. In this context high fidelity 3D-RANS flow simulations are required to analyse the complex blade and endwall boundary layer interaction.


2003 ◽  
Vol 125 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Simon Coldrick ◽  
Paul Ivey ◽  
Roger Wells

This paper describes preparatory work towards three-dimensional flowfield measurements downstream of the rotor in an industrial, multistage, axial compressor, using a pneumatic pressure probe. The probe is of the steady-state four-hole cobra probe type. The design manufacture and calibration of the probe is described. CFD calculations have been undertaken in order to assess the feasibility of using such a probe in the high-speed compressor environment where space is limited. This includes effects of mounting the probe in close proximity to the downstream stator blades and whether it is necessary to adjust the calibration data to compensate for these effects.


1987 ◽  
Vol 109 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Y. Dong ◽  
S. J. Gallimore ◽  
H. P. Hodson

Measurements have been performed in a low-speed high-reaction single-stage axial compressor. Data obtained within and downstream of the rotor, when correlated with the results of other investigations, provide a link between the existence of suction surface–hub corner separations, their associated loss mechanisms, and blade loading. Within the stator, it has been shown that introducing a small clearance between the stator blade and the stationary hub increases the efficiency of the stator compared to the case with no clearance. Oil flow visualizaton indicated that the leakage reduced the extensive suction surface–hub corner separation that would otherwise exist. A tracer gas experiment showed that the large radial shifts of the surface streamlines indicated by the oil flow technique were only present close to the blade. The investigation demonstrates the possible advantages of including hub clearance in axial flow compressor stator blade rows.


Sign in / Sign up

Export Citation Format

Share Document