Effect of Temperature and Crystal Orientation on the Plasticity (SLIP) Evolution in Single Crystal Nickel Base Superalloy Notched Specimens

Author(s):  
Shadab Siddiqui ◽  
Nagaraj K. Arakere ◽  
Fereshteh Ebrahimi

A comprehensive numerical investigation of plasticity (slip) evolution near notches was conducted at 28°C and 927°C, for two crystallographic orientations of double-notched single crystal nickel base superalloys (SCNBS) specimens. The two specimens have a common loading orientation of <001> and have notches parallel to the <010> (specimen I) and <110> (specimen II) orientation, respectively. A three dimensional anisotropic linear elastic finite element model was employed to calculate the stress field near the notch of these samples. Resolved shear stress values were obtained near the notch for the primary octahedral slip systems ({111} <110>) and cube slip systems ({100} <110>). The effect of temperature was incorporated in the model as changes in the elastic modulus values and the critical resolved shear stress (CRSS). The results suggest that the number of dominant slip systems (slip systems with the highest resolved shear stress) and the size and the shape of the plastic zones around the notch are both functions of the orientation as well as the test temperature. A comparison between the absolute values of resolved shear stresses near the notch at 28°C and 927°C on the {111} slip planes revealed that the plastic zone size and the number of activated dominant slip systems are not significantly affected by the temperature dependency of the elastic properties of the SCNBS, but rather by the change in critical resolved shear stress of this material with temperature. The load required to initiate slip was found to be lower in specimen II than in specimen I at both temperatures. Furthermore, at 927°C the maximum resolved shear stress (RSS) on the notch surface was found to be greater on the {100} slip planes as compared with the {111} slip planes in both specimens. The results from this study will be helpful in understanding the slip evolution in SCNBS at high temperatures.

Single-crystal test specimens of van Arkel titanium were obtained by a modification of the strain anneal technique.The modes of slip have been identified as (101̄0) [112̄0],(101̄1) [112̄0], and (0001) [112̄0]. It has been shown that not only does the interstitial impurity affect the magnitude of the critical resolved shear stress but also the relative values for the three slip systems. (101̄0) is the principal slip system and is favoured by increasing purity. A possible mechanism for the role of oxygen and nitrogen in this effect is put forward wherein it is shown that the interstitial sites occupied are such that interstitial elements render slip more difficult on two of the three slip planes in titanium.


2008 ◽  
Vol 72 (6) ◽  
pp. 1181-1199 ◽  
Author(s):  
C. D. Barrie ◽  
A. P. Boyle ◽  
S. F. Cox ◽  
D. J. Prior

AbstractA suite of experimentally deformed single-crystal pyrite samples has been investigated using electron backscatter diffraction (EBSD). Single crystals were loaded parallel to <100> or <110> and deformed at a strain rate of 10-5s-1, confining pressure of 300 MPa and temperatures of 600°C and 700°C. Although geometrically (Schmid factor) the {001}<100> slip system should not be activated in <100> loaded samples, lattice rotation and boundary trace analyses of the distorted crystals indicate this slip system is easier to justify. Determination of 75 MPa as the critical resolved shear stress (CRSS) for {001}<100> activation, in the <110> loaded crystals, suggests a crystal misalignment of ~5—15° in the <100> loaded crystals would be sufficient to activate the {001}<100> slip system. Therefore, {001}<100> is considered the dominant slip system in all of the single-crystal pyrite samples studied. Slip-system analysis of the experimentally deformed polycrystalline pyrite aggregates is consistent with the single-crystal findings, with the exception that {001}<11̄> also appears to be important, although less common than the {001}<100> slip system. The lack of crystal preferred orientation (CPO) development in the polycrystalline pyrite aggregates can be accounted for by the presence of two independent symmetrically equivalent slip systems more than satisfying the von Mises criterion.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2003 ◽  
Vol 57 (29) ◽  
pp. 4540-4546 ◽  
Author(s):  
L.R. Liu ◽  
T. Jin ◽  
N.R. Zhao ◽  
Z.H. Wang ◽  
X.F. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document