Evaluation of Different Alternatives of Power Augmentation for an Existing Combined Cycle Power Plant in Brazil

Author(s):  
Ce´sar Celis ◽  
Vinicius P. de Avellar ◽  
Sandro B. Ferreira ◽  
Sergio L. Braga

Not only in simple cycle power plants, but also in combined cycle power plants based on gas turbines, the power output is considerably reduced with the increase of the ambient temperature. Many technologies for power augmentation of gas turbines have been proposed along the last decades, and several systems have already been applied in real plants. Power augmentation techniques are concentrated on the philosophy of increasing the mass flow rate going through the gas turbine. The goal of this paper is to review the state-of-the-art of the different technologies of power augmentation available today for gas turbines, as well as to evaluate and to select the best alternative of power augmentation for an existing combined cycle power plant in Brazil. The calculations are carried out using an in-house computer program, called the Power Augmentation Technologies (PAT) model, developed for thermal performance modeling and financial analysis. In order to validate the computational model developed, the authors carried out comparisons between the results obtained with this model and data obtained from literature. For the specific combined cycle power plant analyzed in this work, and considering the internal rate of return and the pay-back period as the main investment economic indicators determining the implementation of a project developed for increasing the plant power output, the results show that the power augmentation systems based on evaporative coolers are the most suitable for this plant.

Author(s):  
S. Can Gulen ◽  
Raub W. Smith

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy utilizing the second law of thermodynamics. The classical first law approach, i.e. the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple, fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy.


Author(s):  
S. Can Gülen ◽  
Raub W. Smith

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one-third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy, utilizing the second law of thermodynamics. The classical first law approach, i.e., the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy.


Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


Author(s):  
Cesar Celis ◽  
Sergio Peralta ◽  
Walter Galarza

Abstract The influence of different power augmentation techniques used in gas turbines on the performance of simple cycle type power plants is assessed in this work. A computational model and tool realistically describing the performance of a typical simple cycle type power plant at design and off-design point conditions is initially developed. This tool is complemented with different models of power augmentation technologies. Finally, the whole model including both power plant and power augmentation techniques is used to analyze a case study involving a particular power plant in Peru. The results from the simulations of the specific power plant indicate that power output can be increased through all the evaluated power augmentation technologies. These results show indeed that technologies based on absorption refrigeration systems produce the largest gains in terms of power output (7.1%) and thermal efficiency (0.7%). Such results confirm the suitability of these systems for simple cycle type power plant configurations operating under hot and humid operating conditions as those accounted for here. From an economic perspective, considering the net present value as the key parameter defining the feasibility of a project in this category, power augmentation techniques based on absorption cooling systems result also the most suitable ones for the studied power plant. Power augmentation techniques environmental implications are also quantified in terms of CO2 emissions.


Author(s):  
Christian Engelbert ◽  
Joseph J. Fadok ◽  
Robert A. Fuller ◽  
Bernd Lueneburg

Driven by the requirements of the US electric power market, the suppliers of power plants are challenged to reconcile both plant efficiency and operating flexibility. It is also anticipated that the future market will require more power plants with increased power density by means of a single gas turbine based combined-cycle plant. Paramount for plant efficiency is a highly efficient gas turbine and a state-of-the-art bottoming cycle, which are well harmonized. Also, operating and dispatch flexibility requires a bottoming cycle that has fast start, shutdown and cycling capabilities to support daily start and stop cycles. In order to meet these requirements the author’s company is responding with the development of the single-shaft 1S.W501G combined-cycle power plant. This nominal 400MW class plant will be equipped with the highly efficient W501G gas turbine, hydrogen-cooled generator, single side exhausting KN steam turbine and a Benson™ once-through heat recovery steam generator (Benson™-OT HRSG). The single-shaft 1S.W501G design will allow the plant not only to be operated economically during periods of high demand, but also to compete in the traditional “one-hour-forward” trading market that is served today only by simple-cycle gas turbines. By designing the plant with fast-start capability, start-up emissions, fuel and water consumption will be dramatically reduced. This Reference Power Plant (RPP) therefore represents a logical step in the evolution of combined-cycle power plant designs. It combines both the experiences of the well-known 50Hz single-shaft 1S.V94.3A plant with the fast start plant features developed for the 2.W501F multi-shaft RPP. The paper will address results of the single-shaft 1S.W501G development program within the authors’ company.


Author(s):  
R. Bettocchi ◽  
G. Cantore ◽  
G. Negri di Montenegro ◽  
A. Peretto ◽  
E. Gadda

Geothermal power plants have difficulties due to the low conversion efficiencies achievable. Geothermal integrated combined cycle proposed and analyzed in this paper is a way to achieve high efficiency. In the proposed cycle the geothermal fluid energy is added, through suitable heat ecxhangers, to that of exhaust gases for generating a steam cycle. The proposed cycle maintains the geothermal fluid segregated from ambient and this can be positive on the environmental point of view. Many systems configurations, based on this possibility, can be taken into account to get the best thermodynamic result. The perfomed analysis examines different possible sharings between the heat coming from geothermal and exhaust gases, and gives the resulting system efficiencies. Various pressures of the geothermal steam and water dominated sources are also taken into account. As a result the analysis shows that the integrated plant power output is largely greater than the total power obtained by summing the gas turbine and the traditional geothermal plant power output, considered separately.


Author(s):  
Hsiao-Wei D. Chiang ◽  
Pai-Yi Wang ◽  
Hsin-Lung Li

With increasing demand for power and with shortages envisioned especially during the peak load times during the summer, there is a need to boost gas turbine power. In Taiwan, most of gas turbines operate with combined cycle for base load. Only a small portion of gas turbines operates with simple cycle for peak load. To prevent the electric shortage due to derating of power plants in hot days, the power augmentation strategies for combined cycles need to be studied in advance. As a solution, our objective is to add an overspray inlet fogging system into an existing gas turbine-based combined cycle power plant (CCPP) to study the effects. Simulation runs were made for adding an overspray inlet fogging system to the CCPP under various ambient conditions. The overspray percentage effects on the CCPP thermodynamic performance are also included in this paper. Results demonstrated that the CCPP net power augmentation depends on the percentage of overspray under site average ambient conditions. This paper also included CCPP performance parametric studies in order to propose overspray inlet fogging guidelines for combined cycle power augmentation.


Author(s):  
Eric A. Mu¨ller ◽  
Andrew Wihler

In order to be able to optimally operate a combined cycle power plant in a liberalized electricity market, knowledge of the plant’s maximum exportable power generation capacity is vital. However, the maximum power output of a power plant is affected by numerous variable factors, such as the ambient conditions at the plant site. In addition, the allowable plant operating range might be narrowed by a compulsory reserve margin, if the power plant is participating in a frequency regulation program. In this paper, a power reserve controller is derived, which facilitates the optimal operation of a combined cycle gas turbine power plant subject to a reserve margin requirement. The power reserve controller bases on a mathematical description of the power plant and uses an adaptation mechanism to predict on a real-time basis the maximum allowable plant load limit. Based on tests on a single shaft combined cycle power plant, the operation of the power reserve controller is demonstrated and its performance is assessed. The test results prove that the controller predicts the maximum power output of the plant with high accuracy and that it is able to maintain a desired reserve capacity for frequency response as specified.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Eric A. Müller ◽  
Andrew Wihler

In order to be able to optimally operate a combined cycle power plant in a liberalized electricity market, knowledge of the plant’s maximum exportable power generation capacity is vital. However, the maximum power output of a power plant is affected by numerous variable factors, such as the ambient conditions at the plant site. In addition, the allowable plant operating range might be narrowed by a compulsory reserve margin, if the power plant is participating in a frequency regulation program. In this paper, a power reserve controller is derived, which facilitates the optimal operation of a combined cycle gas turbine power plant subject to a reserve margin requirement. The power reserve controller is based on a mathematical description of the power plant and uses an adaptation mechanism to predict on a real-time basis the maximum allowable plant load limit. Based on tests on a single shaft combined cycle power plant, the operation of the power reserve controller is demonstrated and its performance is assessed. The test results prove that the controller predicts the maximum power output of the plant with high accuracy and that it is able to maintain a desired reserve capacity for frequency response as specified.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document