Economic Benefits of Hybrid Drive Propulsion for DDG-51 Class Ships

Author(s):  
Fred T. Willett ◽  
Greg Reed ◽  
Gene Castles

The typical operating profile for destroyers and other marine vessels includes a large portion of low-speed activity. Low-speed operation is accompanied by propulsion system inefficiency, as the propulsion turbines are operating off-design. Low speeds are further enabled by propeller pitch variation, which exacerbates system inefficiency. A hybrid propulsion system scheme is proposed that will allow propulsion by either mechanical or electrical drive. Electrical power generated by the ship service turbine-generators (SSTGs) is used to drive large permanent magnet motors. The motors then drive the propeller shafts during low speed operation. This scheme allows the propulsion turbines to be shut down and the ship service turbine-generators to run closer to design point, resulting in fuel savings. Additional savings are possible at higher speeds by operating the motor(s) in generation mode, enabling SSTG shut down and propulsion turbine performance optimization. This paper describes in detail the concept of hybrid drive operation and demonstrates the economic justification for such a system.

Author(s):  
S M Newman ◽  
O J Simmonds

Light Frigates (LFs), like many warships, will spend a reasonable amount of sea time at low speeds. By definition, the LF has to be capable yet affordable, a difficult balance to strike, but a dichotomy which has to be addressed particularly given the cost pressures our world’s navies are under. Whilst low engine loading at loiter speeds may lead to fuel inefficiency and increased maintenance burden, a purely mechanical Combined Diesel and Diesel (CODAD) propulsion system is attractive from a simplicity perspective. Hybrid propulsion architectures, using electrical machines as motors for low-speed operations, can be employed as a way to address this part of the operating profile. This paper explores to what degree a hybrid solution is appropriate for a LF through the consideration of a number of factors.


2019 ◽  
Vol 26 (4) ◽  
pp. 91-96
Author(s):  
Mirosław Karczewski ◽  
Leszek Szczęch ◽  
Filip Polak

AbstractArticle presents the energetic balance of small-unmanned vehicle hybrid power transmission. The vehicle equipped with serial hybrid transmission consisted of electric engines connected to the battery pack and small Diesel power generator. In mentioned construction, battery is used as energy buffer and combustion engine is used more as emergency power supply, and is turned on when battery is depleted. In other condition, power generator can be turned off, without reducing power of transmission parameters, except its range. Vehicles with hybrid drive are very common chosen vehicles by users. More and more often, we also talk about searching for replacement fuels for internal combustion engines, so also for those with hybrid drive. The research was carried out on an unmanned land platform equipped with a hybrid propulsion system supplied as standard with Diesel oil. The article presents the problems of comparing the efficiency of a hybrid vehicle fuelled with Diesel oil, but also with alternative fuels based on kerosene and other components. For test, three types of fuels were used, standard Diesel oil, F-34 and with experimental mixture of Jet A-1 fuel with 10% of 2-ethylhexanol. Energy used for charging of the battery, from tank-to-wheel, was calculated. This also enables to calculate total efficiency of such hybrid power transmission, powered with different fuels.


2011 ◽  
Vol 180 ◽  
pp. 39-45 ◽  
Author(s):  
Gabriel Kost ◽  
Andrzej Nierychlok

This paper presents the application of wheeled vehicle based on a hybrid propulsion system. Describes control system structure and communication between different units of propulsion, intermediary devices and the fundamental issues of building such a network. Virtual propulsion of a wheeled vehicle hybrid drive designed for parallel connection structure of the drive units. This enabled the propulsion work more efficiently through the synergy of energy units – ICE and electric motor, and allowed ICE unit turn off in built-up areas. In the presented research results can be seen as a great contribution to the work of the propulsion system has an internal combustion engine, which not only drives the electric generator, but also a wheeled vehicles.


2019 ◽  
Vol 178 (3) ◽  
pp. 264-268 ◽  
Author(s):  
Marek ORKISZ ◽  
Piotr WYGONIK ◽  
Michał KUŹNIAR ◽  
Maciej KALWARA

Analysis of the possibility of using an engine with a rotating piston as the propulsion of an electric generator in application to a motor glider propulsion The paper presents an analysis of the possibilities of application of a rotating piston engine (Wankel type) as a propulsion for an electric generator in the motor glider propulsion system. This generator would be a part of the propulsion system of a hybrid motor glider using the AOS 71 motor glider airframe. In the research, the rotational characteristics of the LCR 407ti engine were determined experimentally. Driving torque run, power and fuel consumption were determined as a function of engine speed. The obtained results are presented in diagrams. The conceptual diagram of the hybrid drive is presented. The current generator was selected and the effectiveness of the generator and the entire propulsion were assessed from the motor gliders performance point of view. On the basis of the conducted research, conclusions were drawn and there were indicated the objectives and directions of further research on hybrid propulsion with specific aerodynamic and mass limitations of the aircraft


Author(s):  
Noriko Morioka ◽  
Hitoshi Oyori ◽  
Tomoaki Asako ◽  
Katsuyuki Takahashi ◽  
Takumi Ando

The MEA (More Electric Aircraft)/AEA (All Electric Aircraft) and MEE (More Electric Engine) is representative of system evolution, contributing to improved energy management of the entire aircraft system and reducing fuel consumption of aircraft. Looking at future aviation, it is necessary to have further evolution beyond the MEA/AEA and MEE to achieve further improvement of aircraft efficiency and “greener aviation”. The electrified propulsion system, which uses electrical energy as propulsive power, would be a possible option, and various kinds of configurations have been studied and developed. Small one- or two-seater airplanes have already successfully flown with the all-electrified propulsion; however, there are a lot of perspectives for the system configuration for larger-sized commercial aircraft. It is considered that a hybrid propulsion system, in which the E3M (Engine Embedded Electric Machine) provides assisting power to the engine shafts, would be one of the probable configurations. The authors are currently developing the E3M as an LP (Low Pressure) spool-driven generator, and the approach is considered to be practical because E3M technology can be commonly applicable for both large electrical power generation and hybrid propulsion. In this paper, several advanced propulsion system configurations are compared, and perspectives of the hybrid propulsion for future commercial aircraft are described. Also technical challenges for the MEE/E3M, continuing toward future hybrid propulsion, are outlined and further R&D steps are considered.


Author(s):  
M Benatmane ◽  
B Salter

With the ever tightening of budgets and legislation, new vessel builds are facing tough times.  The future maritime industry requires more efficient vessels to minimise ship operational costs with cleaner technologies that meet stringent environment regulations, reduce greenhouse gas emissions, specifically carbon emissions. Emissions reduction continues to be high on the agenda for the marine industry, it is responsible for about 2.5 percent of global greenhouse emissions1 and is under great pressure to reduce its environmental impact. With pressure comes the opportunity to incentivize innovation, developments and implementation of energy efficient measures, both design and operational. Naval propulsion systems are no different from other industries, and the industry is exploring ways to optimise propulsion and electrical power generation systems architecture for better performance and efficiency. Electric technology plays a leading role. The paper will: Provide a brief overview about the hybrid propulsion concept, with key electrical, mechanical qualities and issues. Describe different designs configurations and performances of hybrid propulsion systems from demonstrated and operational systems in the commercial and naval world. Cover the lessons learnt in technologies and controls used on such systems. Examine future architectures including energy storage and explore the benefits and the flexibility these can bringto the hybrid propulsion sphere.


2018 ◽  
Author(s):  
Yuan Zou ◽  
Junqiu Li ◽  
Xiaosong Hu ◽  
Yann Chamaillard

Author(s):  
Olga Leptiukhova ◽  
Marija Utkina

For more than half a century bicycle transport demonstrates its effectiveness as one of the elements of the transport network of the city. Currently, vehicles with low-power motors such as electric bicycle, electric scooter, gyrometer, segway, wheelbarrow, scooter motor and others are gaining people's attention. These vehicles can be combined into a group of low-speed individual vehicles (hereinafter - NITS) with similar re-quirements for the operational parameters of urban infrastructure. From the urban point of view, the interest in NITC is that the number of its users has increased significantly in recent years. The article presents the results of a sociological survey of residents of Serpukhov, allowing to assess the current and potential readi-ness of the population to use NITC. The growing popularity of NITC has led to an increase in the environmen-tal and economic effect, which is manifested at a particular level of development of the movement on NITC. The ecological and economic effect of the use of NITC has an extremely positive impact on the improvement of the urban environment. This article provides a list of indicators that reflect the growth in the standards of living of society from movement by the NITC, and the calculation of one of them - the increase in entrepre-neurial activity on the streets with increased traffic to the NITC. Indicators are necessary for calculation of complex criterion of efficiency and safety of street network due to development of the movement by NITC. The result will allow public authorities authorized to make decisions on the strategy of transport policy of cities to quantify the ratio of economic benefits from the development of infrastructure of the NITC with the cost of its construction and operation.


Author(s):  
Anton Varyukhin ◽  
Viktor Zakharchenko ◽  
Mikhail Gordin ◽  
Flyur Ismagilov ◽  
Vyacheslav Vavilov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document