scholarly journals System Analysis of Waste Heat Applications With LNG Regasification

Author(s):  
Miguel Angel Gonza´lez-Salazar ◽  
Clarissa Belloni ◽  
Matthias Finkenrath ◽  
Simone Berti ◽  
Francesco Gamberi

The combination of the continuously growing demand of energy in the world, the depletion of oil and its sharp price increase, as well as the urgent need for cleaner and more efficient fuels have boosted the global trade of liquefied natural gas (LNG). Nowadays, there is an increasing interest on the design philosophy of the LNG receiving terminals, due to the fact that the existing technologies either use seawater as heating source or burn part of the fuel for regasifying LNG, thus wasting the cryogenic energy of LNG and causing air pollution or harm to marine life. This investigation addresses the task of developing novel systems able to simultaneously regasify LNG and generate electric power in the most efficient and environmentally friendly way. Existing and proposed technologies for integrated LNG regasification and power generation were identified and simple, efficient, safe and compact alternatives were selected for further analysis. A baseline scenario for integrated LNG regasification and power generation was established and simulated. Various novel configurations using Rankine and Brayton cycles were created, modeled and compared to the baseline scenario in terms of LNG regasification rate, efficiency and power output. A study case with a simple and compact design was selected, preliminarily designed and analyzed. The performance and design characteristics of the study case were then compared to the baseline case. The results show that the study case results in a smaller footprint of the plant, at the same time offering a simple design solution though with lower efficiencies.

Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seungjun Choo ◽  
Faizan Ejaz ◽  
Hyejin Ju ◽  
Fredrick Kim ◽  
Jungsoo Lee ◽  
...  

AbstractThermoelectric power generation offers a promising way to recover waste heat. The geometrical design of thermoelectric legs in modules is important to ensure sustainable power generation but cannot be easily achieved by traditional fabrication processes. Herein, we propose the design of cellular thermoelectric architectures for efficient and durable power generation, realized by the extrusion-based 3D printing process of Cu2Se thermoelectric materials. We design the optimum aspect ratio of a cuboid thermoelectric leg to maximize the power output and extend this design to the mechanically stiff cellular architectures of hollow hexagonal column- and honeycomb-based thermoelectric legs. Moreover, we develop organic binder-free Cu2Se-based 3D-printing inks with desirable viscoelasticity, tailored with an additive of inorganic Se82− polyanion, fabricating the designed topologies. The computational simulation and experimental measurement demonstrate the superior power output and mechanical stiffness of the proposed cellular thermoelectric architectures to other designs, unveiling the importance of topological designs of thermoelectric legs toward higher power and longer durability.


2014 ◽  
Vol 1008-1009 ◽  
pp. 897-900
Author(s):  
Xue Min Gong ◽  
Jiu Lin Yang ◽  
Chen Wang

An optimization was performed for a sintering waste heat power unit with all data obtained in the site and under the unit normal operating conditions. The physical and mathematical model for the process of cooling and generation is established, which makes the net power generation as an objective function of the cooling machine imported ventilation, the thickness of sinter and the main steam pressure. Optimizing for single parameter, we found that each parameter had an optimal value for the system. In order to further optimize the system's operating parameters, genetic algorithm was used to make the combinatorial optimization of the three parameters. Optimization results show that power generation capacity per ton is increased by13.10%, and net power generation is increased by 16.17%. The optimization is instructive to the operation of sintering waste heat power unit.


Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


Sign in / Sign up

Export Citation Format

Share Document