The Effect of a Bend-Slot Casing Treatment on the Blade Tip Flow Field of a Transonic Compressor Rotor

Author(s):  
M. Voges ◽  
C. Willert ◽  
R. Mönig ◽  
H.-P. Schiffer

The application of casing treatments (CT) is an effective measure to increase the stable operating range of modern aero engine or gas turbine compressors. As the development and design process of optimized CT geometries is primarily based on numerical simulations, the need for accurate experimental flow field data for related code validation is increasing with the number of applications. While the stall margin enhancement and other stage characteristics can be verified using conventional measurement techniques such as pressure and temperature probes, a deeper insight to the aerodynamic effect of the CT on the rotor flow field can only be provided using non-intrusive, laser-based flow field diagnostics, given that optical access to the compressor stage can be established. The investigation presented herein involved particle image velocimetry (PIV) measurements at high spatial resolution in the blade tip region of the Darmstadt Transonic Compressor Rotor-1 under the influence of a bend-slot CT. Tangential PIV measurement planes were placed at 95% span as well as in the tip gap of the rotor. The investigation included operating conditions at the aerodynamic design point (peak efficiency) and near stall conditions at 100% rpm. Additional reference measurements were performed with the untreated, smooth casing. The experimental study was complimented by numerical simulations of the same compressor and CT geometry using the DLR TRACE code. Based on the combination of both, experimental and numerical flow field results, a detailed analysis of the shock structures and the tip clearance vortex under the influence of the CT was performed. Under the influence of the CT, the fluid exchange between rotor passage and CT slots — driven by the pressure gradient over the blade tip and the leading edge bow shock, respectively — induces secondary flow structures in the tip vortex regime. At near stall conditions the periodical injection of energized fluid out of the CT cavities was identified to be one of the major effects stabilizing the tip clearance vortex and hence delaying the onset of rotating stall.

Author(s):  
Chunill Hah ◽  
Melanie Voges ◽  
Martin Mueller ◽  
Heinz-Peter Schiffer

In the present study, unsteady flow phenomena due to tip clearance flow instability in a modern transonic axial compressor rotor are studied in detail. First, unsteady flow characteristics due the oscillating tip clearance vortex measured with the particle image velocimetry (PIV) and casing-mounted unsteady pressure transducers are analyzed and compared to numerical results with a large eddy simulation (LES). Then, measured characteristic frequencies of the unsteady flow near stall operation are investigated. The overall purpose of the study is to advance the current understanding of the unsteady flow field near the blade tip in an axial transonic compressor rotor near the stall operating condition. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. The currently applied PIV measurements indicate that the flow near the tip region is unsteady even at the design condition. This self-induced unsteadiness increases significantly as the compressor operates toward the stall condition. PIV data show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The spectral analysis of measured end wall and blade surface pressure shows that there are two dominant frequencies near stall. One frequency is about 40–60% of the rotor rotation and the other dominant frequency is about 40–60% of the blade passing frequency (BPF). The first frequency represents the movement of a large blockage over several consecutive blade passages against the rotor rotation. The second frequency represents traditional tip flow instability, which has been widely observed in subsonic compressors. The LES simulations show that the second frequency is due to movement of the instability vortex.


Author(s):  
Chunill Hah ◽  
Douglas C. Rabe ◽  
Aspi R. Wadia

The current paper reports on investigations aimed at advancing the understanding of the flow field near the casing of a forward-swept transonic compressor rotor. The role of tip clearance flow and its interaction with the passage shock on stall inception are analyzed in detail. Steady and unsteady three-dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. The numerical results are first compared with available measured data. Then, the numerically obtained flow fields are interrogated to identify the roles of flow interactions between the tip clearance flow, the passage shock, and the blade/endwall boundary layers. In addition to the flow field with nominal tip clearance, two more flow fields are analyzed in order to identify the mechanisms of blockage generation: one with zero tip clearance, and one with nominal tip clearance on the forward portion of the blade and zero clearance on the aft portion. The current study shows that the tip clearance vortex does not break down, even when the rotor operates in a stalled condition. Interaction between the shock and the suction surface boundary layer causes the shock, and therefore the tip clearance vortex, to oscillate. However, for the currently investigated transonic compressor rotor, so-called breakdown of the tip clearance vortex does not occur during stall inception. The tip clearance vortex originates near the leading edge tip, but moves downward in the spanwise direction inside the blade passage. A low momentum region develops above the tip clearance vortex from flow originating from the casing boundary layer. The low momentum area builds up immediately downstream of the passage shock and above the core vortex. This area migrates toward the pressure side of the blade passage as the flow rate is decreased. The low momentum area prevents incoming flow from passing through the pressure side of the passage and initiates stall inception. It is well known that inviscid effects dominate tip clearance flow. However, complex viscous flow structures develop inside the casing boundary layer at operating conditions near stall.


Author(s):  
Song Yan ◽  
Wuli Chu

The performance curve of the compressor is limited by the surge boundary, so it is of great significance to increase the stable working range of the compressor. The self-circulating casing treatment is an effective way to improve the stable working range of the compressor. In this paper, the study of the influence of the injector position of the self-circulating casing treatment on the transonic axial flow compressor rotor performance is carried out by using the numerical simulation. The influence mechanism of the injector position on the enhancing stability effect of the self-circulating casing treatment is revealed. It is found that the self-circulating casing treatment can reduce the blade tip blockage by restraining the blade tip clearance leakage flow and changing the trajectory of the tip clearance leakage vortex, thus delaying the deterioration of the rotor tip flow field and improving the rotor stability. When the injector position of the self-circulating casing treatment moves from the upstream of the leading edge of the blade tip to the trailing edge of the blade tip, the enhancing stability effect of the self-circulating casing treatment increases first and then decreases. But the high-velocity jet from the injector of the self-circulating casing treatment aggravates the mixing loss of the rotor tip flow field, so that the rotor efficiency slightly decreases after using the self-circulating casing treatment.


Author(s):  
Jo¨rg Bergner ◽  
Heinz-Peter Schiffer

Three-dimensional laser-2-focus measurements complemented by measurements of the instantaneous static wall pressure in the casing above the rotor are used to investigate short length-scale rotating stall inception in an axial transonic compressor rotor. The data was collected at the Darmstadt Transonic Compressor using the forward swept “Rotor-3”. Detailed analysis of the experimental data reveals that in this configuration with pronounced forward sweep stall is not directly caused by the blockage created by the shock vortex interaction. Due to the reduced aerodynamic loading, the tip clearance vortex passes the shock without significant deceleration but shows some great fluctuation in terms of vortex strength. As the compressor is throttled to near stall, the tip clearance vortex eventually reaches the leading edge of the adjacent blade. It can be suggested that as an result, spill forward and so-called “self-induced vortex-oscillation” occurs. A phase-lock of both of these phenomena might be the trigger for a spike-type disturbance of the flow-field. The investigation underpins the great importance of the unsteady flow phenomena at near stall. For a thorough understanding of the flow features at the stability limit of a compressor, which is the basis of any effort to increase the operation range, special attention has to be paid to the unsteadiness of the flow in both experimental and numerical work. To study the mechanism of stall inception it might even be necessary to analyze the flow field around the whole annulus, as there appears to be significant interaction of the flow between neighboring passages.


Author(s):  
Ronald Mailach ◽  
Ingolf Lehmann ◽  
Konrad Vogeler

In this two-part paper results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented. The main part of the experimental investigations was performed using Laser-Doppler-Anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In part II of the paper the flow field in the rotor blade tip region will be discussed. The experimental results reveal a strong periodical interaction of the incoming stator wakes and the rotor blade tip clearance vortices. Consequently, in the rotor frame of reference the tip clearance vortices are periodical with the stator blade passing frequency. Due to the wakes the tip clearance vortices are separated into different segments. Along the mean vortex trajectory these parts can be characterised by alternating patches of higher and lower velocity and flow turning or subsequent counterrotating vortex pairs. These flow patterns move downstream along the tip clearance vortex path in time. As a result of the wake influence the orientation and extension of the tip clearance vortices as well as the flow blockage periodically vary in time.


1998 ◽  
Vol 120 (3) ◽  
pp. 477-486 ◽  
Author(s):  
D. W. Thompson ◽  
P. I. King ◽  
D. C. Rabe

The effects of stepped-tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine causing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100 percent design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0 percent increase in mass flow and a 1.5 percent improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


Author(s):  
Donald W. Thompson ◽  
Paul I. King ◽  
Douglas C. Rabe

The effects of stepped tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine casing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100% design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0% increase in mass flow and a 1.5% improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


Author(s):  
Andrew C. Foley ◽  
Paul C. Ivey

This paper describes the structure of the tip clearance flow in a low speed isolated compressor rotor. Pneumatic cobra probes are radially traversed upstream and downstream of the blade row and the time averaged total pressure losses across the blade row calculated. The increase in pressure losses due to the tip clearance flow is clearly seen. The nature of the tip losses is investigated further using a unique 3D laser transit anemometer to measure velocities and turbulence levels. A 3D representation of the resulting flow field is then constructed using the experimentally measured velocity vectors. With the aid of ‘stream particles’ released into this flow field a vortex structure is then visualised. A section through the path of this vortex assists in showing its development through the blade row. Due to the co-location of this vortex and the total pressure losses in the passage, it is this vortex which is believed to be responsible for the excess total pressure losses in the tip region.


Author(s):  
Toshiyuki Arima ◽  
Masatoshi Shirotori ◽  
Yoshihiro Yamaguchi

A three-dimensional, Reynolds-averaged, compressible Navier-Stokes analysis (using a multi-block grid with the grid embedded in the tip-clearance space) has been developed to study the tip-clearance flow of an axial compressor rotor. A low-Reynolds number k-ε model have been used to reproduce the effects of turbulence. In order to assess the effect of the tip-clearance-grid treatment on prediction for the tip-clearance flow, calculations using a single-block grid (pinched grid topology) and multi-block grid (embedded grid topology) have been performed to calculate the flow field of NASA Rotor 37. The results are compared with experimental data. It has been found that both the single-block and multi-block approaches give a good agreement with the experimental data regarding the overall performance map of the rotor. For the prediction of the spanwise distributions of averaged aerodynamic properties downstream of the rotor, however, the orderly grid over the blade tip associated with the embedded grid has produced accurate predictions particularly from 40% to 80% span. In order to investigate the tip-clearance flow for different operating conditions, calculations have been performed for conditions at 100% (transonic inflow condition) and 60% (subsonic inflow condition) of the design point speed. Computed limiting streamlines at the blade tip surface and particle traces released from the tip-clearance have been used to study the tip-clearance flow. At the 100% speed, both separation and reattachment lines have been observed and a separation bubble occurs. At the 60% speed, the separation line shifts to the blade pressure side and the reattachment line can be partly observed near the leading edge of the blade tip surface. In order to investigate the interaction of the leakage vortex from the tip clearance with the main flow, the computed secondary flows on the cross-flow sections have been analyzed at the 100% and the 60% speeds. At the 100% speed, the vortex core apparently increases in size, as it moves downstream. At 60% speed, the second vortex, first reported by Suder and Celestina in 1994, is barely observable. Furthermore, the trajectory of vortex core identified using a semi-analytical method has also been used to study the vortex motion in the flow field near the blade tip.


Author(s):  
Mark P. Wernet ◽  
Dale Van Zante ◽  
Tony J. Strazisar ◽  
W. Trevor John ◽  
P. Susan Prahst

The accurate characterization and simulation of rotor tip clearance flows has received much attention in recent years due to their impact on compressor-performance and stability. At NASA Glenn the first known three dimensional Digital Particle Image Velocimetry (DPIV) measurements of the tip region of a low speed compressor rotor have been acquired to characterize the behavior of the rotor tip clearance flow. The measurements were acquired phase-locked to the rotor position so that changes in the tip clearance vortex position relative to the rotor blade can be seen. The DPIV technique allows the magnitude and relative contributions of both the asynchronous motions of a coherent structure and the temporal unsteadiness to be evaluated. Comparison of measurements taken at the peak efficiency and at near stall operating conditions characterizes the mean position of the clearance vortex and the changes in the unsteady behavior of the vortex with blade loading. Comparisons of the 3-D DPIV measurements at the compressor design point to a 3D steady N-S solution are also done to assess the fidelity of steady, single-passage simulations to model an unsteady flow field.


Sign in / Sign up

Export Citation Format

Share Document