A Study on Aerodynamic and Structural Design of High Efficiency Composite Blade of 1 MW Class HAWTS Considering Fatigue Life

Author(s):  
Changduk Kong ◽  
Minwoong Kim ◽  
Gilsu Park

In this work, 1 MW class horizontal axis wind turbine blade configuration is properly sized and analyzed using the newly proposed aerodynamic design procedure and the in-house code developed by authors, and its design results are verified through comparison with experimental results of the previously developed wind turbine blade. The wind turbine structural design is carried out using the Glass/Epoxy composite materials and the simplified deign methods by the netting rule and the rule of mixture. The structural safety of the designed blade structure is investigated through the various load case studies, and stress, deformation, buckling and vibration analyses using a commercial FEM code, MSC.NASTRAN. Finally the required 20 years fatigue life is confirmed using the modified Spera’s empirical formulae.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Ki-Hak Lee ◽  
Kyu-Hong Kim ◽  
Dong-Ho Lee ◽  
Kyung-Tae Lee ◽  
Jong-Po Park

A horizontal-axis wind turbine blade is designed using two step optimization procedures with probability approach. For the efficient management of the multiple design variables required for the blade design, the design procedure is divided into two optimization steps. In step 1, the diameter and rotating speed of a blade are determined and design points are extracted from the design space. In step 2-1, blade shapes are optimized by using the strip theory with the minimum energy loss method. The capacity factor and the cost model for each optimized blade shape are calculated in steps 2-2 and 2-3, respectively. To find the global optimum point in the design space, the space is modified into a highly possible region through the use of the probability approach.


Author(s):  
Changduk Kong ◽  
Sungjin Lim ◽  
Hyunbum Park

Although the tower of the horizontal axis wind turbine system is a simple structure relatively to the wind turbine rotor system, its production cost tower is about 20–25% of the whole wind turbine system cost. If a composite materials tower is used instead of the existing steel tower, the production cost can be reduced due to use of low cost composite materials, simple manufacturing process, easy transportation and easy assembly. However studies on the composite materials towers are very few. Therefore, in this study a specific structural design procedure for 2 MW class glass/polyester face sheets-sand/ polyester core sandwich composite wind turbine system towers is newly proposed through load case study, trade-off study, optimal structural design and structural analysis. Optimal tower design can minimize both weight and cost. In the structural design of the tower, three kinds of loads such as wind load, blades, nacelle and tower weight and blade aerodynamic drag load should be considered. Initial structural design is carried out using the netting rule and the rule of mixture. Then the structural safety and stability are confirmed using a commercial finite element code, MSC NASTRAN/PATRAN. It is confirmed that the finally proposed tower meets the tower design requirements.


2012 ◽  
Vol 433-440 ◽  
pp. 438-443 ◽  
Author(s):  
Jie Zhu ◽  
Xin Cai ◽  
Pan Pan ◽  
Rong Rong Gu

Structural analysis of wind turbine blade is a necessary part in the process of blade design. Based on the ANSYS software, the stress and strain distribution analysis of a kind of 1500kW horizontal axis wind turbine blade is carried out at the action of ultimate flapwise loads, the vibration mode shapes of this blade are also analyzed in this paper, thus providing some reference value for the larger-scale wind turbine blade on structural design.


2011 ◽  
Vol 383-390 ◽  
pp. 1895-1900 ◽  
Author(s):  
Jie Zhu ◽  
Xin Cai ◽  
Pan Pan ◽  
Rong Rong Gu

Structural analysis of wind turbine blade is a necessary part in the process of blade design. Based on the ANSYS software, the stress and strain distribution analysis of a kind of 1500kW horizontal axis wind turbine blade is carried out at the action of ultimate flapwise loads, the vibration mode shapes of this blade are also analyzed in this paper, thus providing some reference value for the larger-scale wind turbine blade on structural design.


Author(s):  
Fouad Mohammad ◽  
Emmanuel Ayorinde

The aerodynamic loadings that act on the blade of a horizontal axis wind turbine change as a function of time due to the instantaneous change of the wind speed, the wind direction and the blade position. The new contribution in this study is the introduction of a simplified non CFD based procedure for the calculation of all the aerodynamic loadings acting on a wind turbine blade. The premise of the current simplified model is that (a) the forces can be modeled by a set of point loads rather than distributed pressures, and (b) the magnitudes of these point loads can be estimated using the below load formulas, (c) an interpolation scheme needed to have all computed forces and moments as a function of the blade lengthwise x. Considering a 14m blade length and utilizing a time dependent set of parameters such as angle of attack, material and air density, wind and blade speed, flow angle, yaw, pitch angles, the centrifugal forces (along x-direction of the blade length), the cross-sectional forces (Fy and Fz) and the twisting moment of the blade (about the x-direction) were calculated for each of all the given time steps. After that the authors explain how to interpolate the calculated loadings (forces and twisting moment) and the right formulas to compute the aerodynamic load vector (the right side of the dynamic equations of motion).


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4643-4650
Author(s):  
Yan Li ◽  
Lei Shi ◽  
Wen-Feng Guo ◽  
Kotaro Tagawa ◽  
Bin Zhao

Icing accretion on wind turbine will degrade its performance, resulting in reduction of output power and even leading to accidents. For solving this problem, it is necessary to predict the icing type and shape on wind turbine blade, and evaluate the variation of aerodynamic characteristics. In this paper the icing types and shapes in presence of airfoil, selected from blade of 1.5 MW horizontal-axis wind turbine, are simulated under different ambient temperatures and icing time lengths. Based on the icing simulation results, the aerodynamic characteristics of icing airfoils are simulated, including lift and drag coefficient, lift-drag ratio, etc. The simulation results show that the glaze ice with two horns presents on airfoil under high ambient temperature such as -5?C. When ambient temperatures are low, such as -10?C and -15?C, the rime ices with streamline profiles present on the airfoil. With increase in icing time the lift forces and coefficients decrease, and the drag ones increase. According to the variations of lift-drag ratios of icing airfoil, the aerodynamic performance of airfoil deteriorates in the presence of icing. The glaze ice has great effect on aerodynamic characteristics of airfoil. The research findings lay theoretical foundation for icing wind tunnel experiment.


Sign in / Sign up

Export Citation Format

Share Document