A Technological Effect Modeling on Complex Turbomachinery Applications With an Overset Grid Numerical Method

Author(s):  
Gilles Billonnet ◽  
Lionel Castillon ◽  
Jacques Riou ◽  
Gilles Leroy ◽  
André Paillassa

The modeling of technological effects on complex turbomachinery flow is described in the paper. The Chimera method based on structured overlapping grids is applied using the ONERA solver elsA. The application of the method on two industrial test cases are presented. The first investigated application is an experimental configuration of a turbine vane with film-cooling. The film cooling system is made up of a very large number of holes. The Chimera method enables simulating the interaction between the cooling jets and the vane flow and improves heat flux prediction compared to simulations modeling cooling flows with wall boundary conditions. The second investigated application is a variable Inlet Guide Vane of an experimental compressor. The application includes the main flow vane, the pivot linking the hub wall with the IGV blade, and the built-in turntable within the shroud which ensures the blade fitting. The benefit of the overset grid method is highlighted by comparisons with computation results obtained on the smooth end-walls. For three different stagger angles (0°, 30° and 60°) the patterns of the secondary flows are presented as well as the comparisons of the calculated flow field with the available experimental data.

Author(s):  
D. Charbonnier ◽  
P. Ott ◽  
M. Jonsson ◽  
F. Cottier ◽  
Th. Ko¨bke

Detailed surface measurements of the thermal performance of a film cooling system have been performed on the endwall of a nozzle guide vane (NGV) mounted in a linear cascade facility at EPFL. An external cooling scheme including several rows of fan-shaped and cylindrical cooling holes has been designed. By testing different cooling flow rates at a NGV exit Reynolds number of 1.7E+06 and Mach number of 0.88, detailed aerodynamic and heat transfer values were obtained destined to assess the design tools for film cooled platforms. The surface static pressure distribution and the film cooling effectiveness on the endwall surface have been experimentally determined. The measurements were obtained applying the pressure sensitive paint technique measuring the coolant gas concentration. An engine representative density ratio between the coolant and the external hot gas flow was achieved by the injection of CO2. The working conditions of the test case similar to realistic engine conditions allow for the validation of in-house CFD codes and the investigation of the reliability of modern commercial tools in such a complex cooling system. The numerical campaign has been performed on the same numerical grid, using the commercial codes FLUENT and CFX, used by EPFL and MTU respectively. A detailed analysis of the grid effects on the obtained results has been previously realised as well as the study of the influence of the modelling approximations. Three cooling mass flows have been simulated and the performance parameters of the film cooling system have been compared to the experimentally obtained data. Special emphasis has been put on the jet penetration effects and on the interaction of secondary flows with the coolant flow. The experimental and numerical efforts were part of the EU funded research project TATEF2 (Turbine Aero-Thermal External Flows 2).


Author(s):  
W. Sanz ◽  
P. Pieringer ◽  
W. Baumgartner ◽  
W. Edelbauer ◽  
C. Pilz ◽  
...  

In this work the flow through a pre-swirl turbine guide vane was calculated using two different flow solvers and compared with total pressure measurements in a downstream plane. The flow is transonic and strongly influenced by secondary flows. A special feature of this cascade is that the gap height at the hub is varying. Flow separation and leakage vortex flow dominate the loss generation. The flow is simulated using an in-house CFD code as well as the commercially available code FLUENT. The flow is carefully analysed and the loss generation mechanisms are presented in detail. The comparison with the measured total pressure distribution shows that the overall loss scheme is well predicted by both codes, but there are still large deficiencies in the quantitative results. The commercial code FLUENT is closer to the measurement data. Further investigations are performed to find out the differences between both codes.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Nafiz H. K. Chowdhury ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

Turbine vanes are typically assembled as a section containing single or double airfoil units in an annular pattern. First stage guide vane assembly results in two common mating interfaces: a gap between combustor and vane endwall and another resulted from the adjacent sections, called slashface. High pressure coolant could leak through these gaps to reduce the ingestion of hot gas and achieve certain cooling benefit. As vane endwall region flow field is already very complicated due to highly three-dimensional secondary flows, then a significant influence on endwall cooling can be expected due to the gap leakage flows. To determine the effect of leakage flows from those gaps, film cooling effectiveness distributions were measured using pressure sensitive paint (PSP) technique on the endwall of a scaled up, midrange industrial turbine vane geometry with the multiple rows of discrete film cooling (DFC) holes inside the passages. Experiments were performed in a blow-down wind tunnel cascade facility at the exit Mach number of 0.5 corresponding to Reynolds number of 3.8 × 105 based on inlet conditions and axial chord length. Passive turbulence grid was used to generate free-stream turbulence (FST) level about 19% with an integral length scale of 1.7 cm. Two parameters, coolant-to-mainstream mass flow ratio (MFR) and density ratio (DR), were studied. The results are presented as two-dimensional film cooling effectiveness distribution on the vane endwall surface with the corresponding spanwise averaged values along the axial direction.


Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract Flow over gas turbine endwalls is complex and highly three-dimensional. As boundaries for modern engine designs are pushed, this already-complex flow is affected by aggressive application of film cooling flows that actively interact. This two-part study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The approach flow conditions represent flow exiting a low-NOx combustor. The test section includes geometric and cooling details of a combustor-turbine interface in addition to endwall film cooling flows injected upstream of the passage. The first part of this study describes in detail, the passage aerodynamics as affected by injection of cooling flows. It reveals a system of secondary flows, including the newly-discovered Impingement Vortex, which redefines our understanding of the aerodynamics of flow in a modern, film-cooled, first-stage vane row. The second part investigates, through thermal measurements, the distribution, mixing and disruption of cooling flows over the endwall. Measurements are made with and without active endwall film cooling. Descriptions are made through adiabatic surface effectiveness measurements and correlations with in-passage velocity (presented in part one) and thermal fields. Results show that the newly-discovered impingement vortex has a positive effect on coolant distribution through passage vortex suppression and by carrying the coolant to hard-to-cool regions in the passage, including the pressure surface near the endwall.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract Modern gas turbines are subjected to very high thermal loading. This leads to a need for aggressive cooling to protect components from damage. Endwalls are particularly challenging to cool due to a complex system of secondary flows near them that wash and disrupt the protective coolant films. This highly three-dimensional flow not only affects but is also affected by the momentum of film cooling flows, whether injected just upstream of the passage to intentionally cool the endwall or as combustor cooling flows injected further upstream in the engine. This complex interaction between the different cooling flows and passage aerodynamics has been recently studied in a first stage nozzle guide vane. The present paper presents a detailed study on the sensitivity of aero-thermal interactions to endwall film cooling mass flow to mainstream flow ratio. The test section represents a first stage nozzle guide vane with a contoured endwall and endwall film cooling injected just upstream of it. The test section also includes an engine-representative combustor–turbine interface geometry with combustor cooling flows injected at a constant rate. The approach flow conditions represent flow exiting a low-NOx combustor. Adiabatic surface thermal measurements and in-passage velocity and thermal field measurements are presented and discussed. The results show the dynamics of passage vortex suppression and the increase of impingement vortex strength as MFR changes. The effects of these changes of secondary flows on coolant distribution are presented.


Author(s):  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, aerodynamic and thermal performance of a linear nozzle vane cascade is fully assessed. Tests have been carried out with and without platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at variable cooling injection conditions. Aero-thermal characterization of vane platform was obtained through 5-hole probe measurements, oil & dye surface flow visualizations, measurements of end wall adiabatic film cooling effectiveness and heat transfer coefficient. The platform cooling scheme operated at nominal injection rate was shown to effectively reduce the heat load over most of the platform surface, with only a small increase in secondary flows loss. Combustor holes injection resulted beneficial in controlling momentum of coolant approaching the cascade, thus limiting the secondary flows growth and resulting in an increase of the coolant film length inside of the passage.


Author(s):  
W. F. Colban ◽  
K. A. Thole ◽  
G. Zess

Improved durability of gas turbine engines is an objective for both military and commercial aeroengines as well as for power generation engines. One region susceptible to degradation in an engine is the junction between the combustor and first vane given that the main gas path temperatures at this location are the highest. The platform at this junction is quite complex in that secondary flow effects, such as the leading edge vortex, are dominant. Past computational studies have shown that the total pressure profile exiting the combustor dictates the development of the secondary flows that are formed. This study examines the effect of varying the combustor liner film-cooling and junction slot flows on the adiabatic wall temperatures measured on the platform of the first vane. The experiments were performed using large-scale models of a combustor and nozzle guide vane in a wind tunnel facility. The results show that varying the coolant injection from the upstream combustor liner leads to differing total pressure profiles entering the turbine vane passage. Endwall adiabatic effectiveness measurements indicate that the coolant does not exit the upstream combustor slot uniformly but instead accumulates along the suction side of the vane and endwall. Increasing the liner cooling continued to reduce endwall temperatures, which was not found to be true with increasing the film-cooling from the liner.


Author(s):  
Zhan Wang ◽  
Jian-Jun Liu ◽  
Bai-tao An ◽  
Chao Zhang

The effects of axial row-spacing for double jet film-cooling (DJFC) with compound angle on the cooling characteristics under different blowing ratios were investigated numerically. First, the flow fields and cooling effectiveness of DJFC on flat plate with different axial row-spacing were calculated. Film-cooling with fan-shaped or cylindrical holes was also calculated for the comparison. The results indicate that a larger axial row-spacing is helpful to form the anti-kidney vortex and to improve the cooling effectiveness. The DJFC was then applied to the suction and pressure surface of a real turbine inlet guide vane. Comparisons of film-cooling effectiveness with the cylindrical and fan-shaped holes were also conducted. The results for the guide vane show that on the suction surface the DJFC with a larger axial row-spacing leads to better film coverage and better film-cooling effectiveness than the cylindrical or fan-shaped holes. On the pressure surface, however, the film-cooling with fan-shaped holes is superior to the others.


2010 ◽  
Vol 19 (6) ◽  
pp. 514-518 ◽  
Author(s):  
Jian-Jun Liu ◽  
Bai-Tao An ◽  
Jie Liu ◽  
W. Zhan

2021 ◽  
pp. 1-39
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong Kim ◽  
...  

Abstract Flow over gas turbine endwalls is complex and highly three-dimensional. As boundaries for modern engine designs are pushed, this already-complex flow is affected by aggressive application of film cooling flows that actively interact. This two-part study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The approach flow conditions represent flow exiting a low-NOx combustor. The test section includes geometric and cooling details of a combustor-turbine interface in addition to endwall film cooling flows injected upstream of the passage. The first part of this study describes in detail, the passage aerodynamics as affected by injection of cooling flows. It reveals a system of secondary flows, including the newly-discovered Impingement Vortex, which redefines our understanding of the aerodynamics of flow in a modern, film-cooled, first-stage vane row. The second part investigates, through thermal measurements, the distribution, mixing and disruption of cooling flows over the endwall. Measurements are made with and without active endwall film cooling. Descriptions are made through adiabatic surface effectiveness measurements and correlations with in-passage velocity (presented in part one) and thermal fields. Results show that the newly-discovered impingement vortex has a positive effect on coolant distribution through passage vortex suppression and by carrying the coolant to hard-to-cool regions in the passage, including the pressure surface near the endwall.


Sign in / Sign up

Export Citation Format

Share Document