Aerodynamic and Heat Transfer Characterization of a Nozzle Vane Cascade With and Without Platform Cooling

Author(s):  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, aerodynamic and thermal performance of a linear nozzle vane cascade is fully assessed. Tests have been carried out with and without platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at variable cooling injection conditions. Aero-thermal characterization of vane platform was obtained through 5-hole probe measurements, oil & dye surface flow visualizations, measurements of end wall adiabatic film cooling effectiveness and heat transfer coefficient. The platform cooling scheme operated at nominal injection rate was shown to effectively reduce the heat load over most of the platform surface, with only a small increase in secondary flows loss. Combustor holes injection resulted beneficial in controlling momentum of coolant approaching the cascade, thus limiting the secondary flows growth and resulting in an increase of the coolant film length inside of the passage.

Author(s):  
G. Barigozzi ◽  
A. Perdichizzi ◽  
L. Abba ◽  
L. Pestelli

Abstract The present paper reports on an experimental investigation on the aerodynamic and heat transfer performance of different platform cooling schemes: two based on cylindrical and shaped holes and one featuring a slot located upstream of the leading edge plane simulating the combustor to stator interface gap. Tests were run on a 6-vane cascade operated at an isentropic cascade exit Mach number of 0.4 and a significant inlet turbulence intensity level of about 9%. The cooling schemes were first tested to quantify their impact on secondary flows and related losses for variable injection conditions. Heat transfer performance was then assessed through adiabatic film cooling effectiveness and heat transfer coefficient measurements. The Net Heat Flux Reduction parameter was then computed to critically assess the cooling schemes. When compared with the cylindrical hole scheme, shaped holes outperform for all tested injection rates, while the slot alone is able to thermally protect only the front of the passage. Discrete holes are required to cool the platform region along the whole pressure side and the suction side leading edge region.


Author(s):  
G. Barigozzi ◽  
H. Abdeh ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of the presence of an inlet flow non uniformity on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out with platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. An obstruction was installed upstream of the cascade at variable tangential and axial position to generate a flow non uniformity. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition. Aero-thermal characterization of vane platform was obtained through 5-hole probe and end wall adiabatic film cooling effectiveness measurements. Results show a relevant negative impact of inlet flow non uniformity on the cooled cascade aerodynamic and thermal performance. Higher film cooling effectiveness and lower aerodynamic losses are obtained when the inlet flow non uniformity is located at mid pitch, while lower effectiveness and higher losses are obtained when it is aligned to the vane leading edge. Moving the non uniformity axially or changing its blockage only marginally influences the platform thermal protection.


Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of inlet flow incidence on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out on a solid and a cooled cascade. In the cooled cascade, coolant is ejected at the end wall through a slot located upstream of the leading edge plane. Moreover, a vane showerhead cooling system is also realized through 4 rows of cylindrical holes. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition, varying the inlet flow angle in the range ±20°. The aero-thermal characterization of vane platform was obtained through 5-hole probe and end wall adiabatic film cooling effectiveness measurements. Vane load distributions and surface flow visualizations supported the discussion of the results. A relevant negative impact of positive inlet flow incidence on the cooled cascade aerodynamic and thermal performance was detected. A negligible influence was instead observed at negative incidence, even at the lowest tested value of −20°.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
G. Barigozzi ◽  
H. Abdeh ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of the presence of an inlet flow nonuniformity on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out with platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. An obstruction was installed upstream of the cascade at variable tangential and axial position to generate a flow nonuniformity. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition. Aerothermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Results show a relevant negative impact of inlet flow nonuniformity on the cooled cascade aerodynamic and thermal performance. Higher film cooling effectiveness and lower aerodynamic losses are obtained when the inlet flow nonuniformity is located at midpitch, while lower effectiveness and higher losses are obtained when it is aligned to the vane leading edge. Moving the nonuniformity axially or changing its blockage only marginally influences the platform thermal protection.


Author(s):  
G. Barigozzi ◽  
A. Perdichizzi ◽  
L. Pestelli ◽  
R. Abram

Abstract This paper reports the results of a combined experimental and numerical investigation carried out to support the design of a film cooling system for a rotor blade platform. A 7 blade cascade of a high-pressure-rotor stage of a heavy-duty gas turbine has been tested in a low speed wind tunnel. Tests have been carried out at a low Mach number (Ma2is = 0.27) with a relatively high inlet turbulence intensity level of about 7.6% at the leading edge plane. The same cascade model was also numerically tested by means of a 3D RANS approach. Cascade flow and heat transfer behavior was first experimentally assessed without coolant injection and used to validate the numerical approach. These data were also used to design the platform cooling scheme based on shaped holes that was then tested for variable injection rates. The thermal behavior was measured by using the Binary PSP technique, so to obtain film cooling effectiveness distributions over the passage. RANS 3D CFD simulations were also run on the same cooled model and testing conditions, allowing to critically assess the prediction capability of the selected numerical approach and of the design process.


Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

Abstract In the present paper, the influence of inlet flow incidence on the thermal performance of a film cooled linear nozzle vane cascade is assessed. Tests have been carried out on a cooled cascade, featuring a showerhead cooling system made of 4 rows of cylindrical holes. The cascade was tested by varying the inlet flow angle in the range ±20° at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12. The thermal characterization of vane leading edge region was obtained through adiabatic film cooling effectiveness measurements. Vane load distributions supported the discussion of the results. Varying the incidence angle in either positive or negative angles, the thermal protection on the vane is reduced while the maximum protection happened at 0° incidence case.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of inlet flow incidence on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out on a solid and a cooled cascade. In the cooled cascade, coolant is ejected at the end wall through a slot located upstream of the leading edge plane. Moreover, a vane showerhead cooling system is also realized through four rows of cylindrical holes. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition, varying the inlet flow angle in the range ±20 deg. The aero-thermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Vane load distributions and surface flow visualizations supported the discussion of the results. A relevant negative impact of positive inlet flow incidence on the cooled cascade aerodynamic and thermal performance was detected. A negligible influence was instead observed at negative incidence, even at the lowest tested value of −20 deg.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Sign in / Sign up

Export Citation Format

Share Document