Three-Dimensional Mass Fraction Distribution of a Spray Measured by X-Ray Computed Tomography

Author(s):  
Filippo Coletti ◽  
Michael J. Benson ◽  
Alexander L. Sagues ◽  
Benjamin H. Miller ◽  
Rebecca Fahrig ◽  
...  

In order to design a spraying system with the desired characteristics, the atomization process has to be understood in detail, including the primary break-up of the liquid core. Accurate prediction of primary break-up is a major barrier to computer-based analysis of spray combustion. The development of models is hindered by the lack of validation data in a region where the fluid is dense, and optical access is therefore limited. The present experimental study is aimed at probing the spray structure by means of X-ray computed tomography (CT). A full-cone atomizer (0.79 mm orifice diameter) spraying in air at ambient pressure is investigated as a proof of concept. A mixture of water and iodine is used as the working fluid, providing elevated X-ray absorption and therefore improved signal-to-noise ratio. Several hundreds of X-ray projections are acquired as the spraying atomizer is rotated in front of the detector. Standard software for medical imaging is used to reconstruct the three-dimensional time-averaged distribution of liquid mass fraction in the full field of view, from the intact liquid core to the dilute spray region. A spatial resolution of 0.6 mm is obtained along the spraying direction, while the resolution is 0.3 mm in the other two directions. Significant asymmetries in the structure of the spray are revealed.

Author(s):  
Filippo Coletti ◽  
Michael J. Benson ◽  
Alexander L. Sagues ◽  
Benjamin H. Miller ◽  
Rebecca Fahrig ◽  
...  

In order to design a spraying system with the desired characteristics, the atomization process has to be understood in detail, including the primary breakup of the liquid core. Accurate prediction of primary breakup is a major barrier to computer-based analysis of spray combustion. The development of models is hindered by the lack of validation data in a region where the fluid is dense, and optical access is therefore limited. The present experimental study is aimed at probing the spray structure by means of X-ray computed tomography (CT). A full-cone atomizer (0.79 mm orifice diameter) spraying in air at ambient pressure is investigated as a proof of concept. A mixture of water and iodine is used as the working fluid, providing elevated X-ray absorption and therefore, improved signal-to-noise ratio. Several hundreds of X-ray projections are acquired as the spraying atomizer is rotated in front of the detector. Standard software for medical imaging is used to reconstruct the three-dimensional time-averaged distribution of liquid mass fraction in the full field of view, from the intact liquid core to the dilute spray region. A spatial resolution of 0.6 mm is obtained along the spraying direction, while the resolution is 0.3 mm in the other two directions. Significant asymmetries in the structure of the spray are revealed.


2021 ◽  
Author(s):  
Katherine A. Wolcott ◽  
Guillaume Chomicki ◽  
Yannick M. Staedler ◽  
Krystyna Wasylikowa ◽  
Mark Nesbitt ◽  
...  

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2003 ◽  
Vol 8 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Wolfgang H Stuppy ◽  
Jessica A Maisano ◽  
Matthew W Colbert ◽  
Paula J Rudall ◽  
Timothy B Rowe

2018 ◽  
Vol 139 ◽  
pp. 75-82 ◽  
Author(s):  
A.H. Galmed ◽  
A. du Plessis ◽  
S.G. le Roux ◽  
E. Hartnick ◽  
H. Von Bergmann ◽  
...  

Author(s):  
P Potamianos ◽  
A A Amis ◽  
A J Forester ◽  
M McGurk ◽  
M Bircher

The revision of an orthopaedic procedure can present surgeons with the challenge of a complex reconstructive process. Orthopaedic surgery can also face considerable challenges in cases presenting extensive primary injuries with multiple bone fragmentation, as well as in cases presenting bone deformities. Radiographs are used routinely for orthopaedic surgical planning, yet they provide inadequate information on the precise three-dimensional extent of bone defects. Three-dimensional reconstructions from X-ray computed tomography offer superior visualization but are not portable for consultation or readily available in the operating theatre for guidance during a procedure. A physical model manufactured from X-ray computed tomography data can offer surgeons a clear understanding of complex anatomical detail, by providing an intuitive physical relationship between patient and model. Rapid prototyping was used for the construction of an anatomical model in a case presenting with a complex shoulder injury. The model provided a definitive interpretation of joint pathology and enabled a full assessment of the degree of injury.


Sign in / Sign up

Export Citation Format

Share Document