Numerical Investigation of Film Cooling Performance With Different Internal Flow Structures

Author(s):  
Jianxia Luo ◽  
Cunliang Liu ◽  
Huiren Zhu

Four coolant channel configurations, including supply plenum without crossflow, smooth channel with crossflow and ribbed channels with crossflow ( 135° and 45° angled ribs), are simulated to find out the effect of internal flow structures on the external film cooling performance. Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment are performed using a commercial code Fluent. Blowing ratios cover a range from 0.5 to 2.0. For the three cases with crossflow, a constant Reynolds number, ReDh, is fixed as 100000. Particular attention has been paid to the flow structures and counter-rotating vortices. Helical motion of secondary flow is observed in the hole of the smooth case and the 45° ribs case, inducing strong velocity separation in the cooling hole and blocks at the entrance and exit. In the two cases, the cooling-air jet divides into two parts after being blown out of the hole and a pair of skewed vortices appears downstream. In the 135° ribs case, the vortex in the upper half region of the secondary flow channel rotates in the same direction with the hole inclination direction, the straight stream lines are generated and therefore lower loss and higher discharge coefficient. Experimental data of the smooth case and the 135° ribs case show the good agreement with the numerical results.

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Dale W. Fox ◽  
Fraser B. Jones ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
...  

Most studies of turbine airfoil film cooling in laboratory test facilities have used relatively large plenums to feed flow into the coolant holes. However, a more realistic inlet condition for the film cooling holes is a relatively small channel. Previous studies have shown that the film cooling performance is significantly degraded when fed by perpendicular internal crossflow in a smooth channel. In this study, angled rib turbulators were installed in two geometric configurations inside the internal crossflow channel, at 45 deg and 135 deg, to assess the impact on film cooling effectiveness. Film cooling hole inlets were positioned in both prerib and postrib locations to test the effect of hole inlet position on film cooling performance. A test was performed independently varying channel velocity ratio and jet to mainstream velocity ratio. These results were compared to the film cooling performance of previously measured shaped holes fed by a smooth internal channel. The film cooling hole discharge coefficients and channel friction factors were also measured for both rib configurations with varying channel and inlet velocity ratios. Spatially averaged film cooling effectiveness is largely similar to the holes fed by the smooth internal crossflow channel, but hole-to-hole variation due to inlet position was observed.


Author(s):  
Sebastian Schulz ◽  
Simon Maier ◽  
Jeffrey P. Bons

In an attempt to abate the detrimental jet vorticity and lift-off effects at high blowing ratios, the objective of the present study is to investigate the impact of an anti-vortex film cooling hole design on the film cooling effectiveness and the secondary flow field. Furthermore, the influence of low and high turbulence levels is studied with Tu ≈ .0.7% and ≈ 10%, respectively. For the experiments infrared thermography and particle image velocimetry (PIV) are employed. The experiments are conducted in a subsonic wind tunnel at a Reynolds number of 11000 based on the film cooling hole diameter. A flat plate model with an array of three cylindrical primary holes with secondary offshoots to each side represents the anti-vortex geometry. The cylindrical hole arrangement with a diameter of 17.5 mm is inclined at 30° in streamwise direction, with the anti-vortex holes branching off from the primary hole base in a 21° angle. Information from a flat plate with six cylindrical holes of 17.5 mm in diameter inclined at 30 in streamwise direction is used as baseline for comparison. The primary hole spacing was 4.75 and 3 hole diameters, respectively. Results are presented for blowing ratios of 1 and 2 with a constant density ratio of 1.1. The PIV measurements are taken in two planes perpendicular to the flow direction to record the secondary flow structures. The results of the infrared thermography show a strong decrease in film cooling effectiveness as high turbulence levels occur, especially for low blowing ratios. For higher blowing ratios low and high turbulence levels have similar effects on film cooling effectiveness. A significant improvement in film cooling performance is displayed by the anti-vortex design over the standard circular hole arrangement for every blowing ratio. The effectiveness results reveal an improved lateral spreading of the coolant with coolant jets staying attached throughout the series of experiments. By remaining inside the boundary layer, the effects of a high turbulent freestream on film cooling performance is less. The PIV results unveil information of a new vortex pair on either side of the primary hole kidney vortex. Especially at high blowing ratios the results indicate, that the anti-vortex hole design promotes the interaction between the vortical structures, explaining the increased lateral film effectiveness results. The factor which lends to the superior performance and credibility of the studied anti-vortex design is that the results are obtained for 35% less mass flow than the baseline.


Author(s):  
Eiji Sakai ◽  
Toshihiko Takahashi

Turbulence promoters such as ribs inside turbine blade coolant channels are used to improve convective cooling but at the same time could influence external film cooling performance. The effects of rib orientation and rib position on film cooling performance are experimentally and numerically studied with a flat plate configuration in which external (main) flow and internal (secondary) flow are oriented perpendicular to each other. In the experiment, temperature fields are measured by thermo-couples varying blowing ratio at constant Reynolds number of main and secondary flows. To obtain detailed information about flow fields, Reynolds Averaged Navier Stokes (RANS) simulation and Detached Eddy Simulation (DES) are also performed using a commercial code Fluent. Temperature measured shows that rib orientation has a strong influence on film effectiveness. With forward-oriented ribs, higher film effectiveness is observed compared to the reference case without ribs. On the contrary with inverse-oriented ribs, lower film effectiveness is observed. The difference comes from the flow structure in the film cooling hole. With the forward-oriented ribs, straight stream lines are observed in the cooling hole, while with the inverse-oriented ribs, helical stream lines are observed. Due to the helical stream lines in the hole, ejection angle of the secondary flow to the main stream becomes large, resulting in so called lift-off and lower film effectiveness.


Author(s):  
Dale W. Fox ◽  
Fraser B. Jones ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
...  

Most studies of turbine airfoil film cooling in laboratory test facilities have used relatively large plenums to feed flow into the coolant holes. However, a more realistic inlet condition for the film cooling holes is a relatively small channel. Previous studies have shown that the film cooling performance is significantly degraded when fed by perpendicular internal crossflow in a smooth channel. In this study, angled rib turbulators were installed in two geometric configurations inside the internal crossflow channel, at 45° and 135°, to assess the impact on film cooling effectiveness. Film cooling hole inlets were positioned in both pre-rib and post-rib locations to test the effect of hole inlet position on film cooling performance. A test was performed independently varying channel velocity ratio and jet to mainstream velocity ratio. These results were compared to the film cooling performance of previously measured shaped holes fed by a smooth internal channel. The film cooling hole discharge coefficients and channel friction factors were also measured for both rib configurations with varying channel and inlet velocity ratios. Spatially-averaged film cooling effectiveness is largely similar to the holes fed by the smooth internal crossflow channel, but hole-to-hole variation due to inlet position was observed.


Author(s):  
Sun-min Kim ◽  
Ki-Don Lee ◽  
Kwang-Yong Kim

Film-cooling has been widely used as the important alternative to protect the turbine blade. Since the film-cooling hole geometry is one of the most influential parameters for film-cooling performance, various film-cooling hole schemes have been developed to increase cooling performance for the past few decades. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as fan-shaped, crescent, louver, and dumbbell holes. For analyzes of the turbulent flow and film-cooling, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been performed in comparison with experimental data. The flow characteristics and film-cooling performance for each hole shape have been investigated and evaluated in terms of local- and averaged film-cooling effectivenesses.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical investigation of the film cooling performance from novel sister shaped single-holes (SSSH) is presented in this paper and the obtained results are compared with a single cylindrical hole, a forward diffused shaped hole, as well as discrete sister holes. Three types of the novel sister shaped single-hole schemes namely downstream, upstream and up/downstream SSSH, are designed based on merging the discrete sister holes to the primary hole in order to reduce the jet lift-off effect and increase the lateral spreading of the coolant on the blade surface as well as a reduction in the amount of coolant in comparison with discrete sister holes. The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The upstream SSSH demonstrates similar film cooling performance to that of the forward diffused shaped hole for the low blowing ratio of 0.5. While it performs more efficiently at M = 1, where the centerline and laterally averaged effectiveness results improved by 70% and 17%, respectively. On the other hand, the downstream and up/downstream SSSH schemes show a considerable improvement in film cooling performance in terms of obtaining higher film cooling effectiveness and less jet lift-off effect as compared with the single cylindrical and forward diffused shaped holes for both blowing ratios of M = 0.5 and 1. For example, the laterally averaged effectiveness for the downstream SSSH configuration shows an improvement of approximately 57% and 110% on average as compared to the forward diffused shaped hole for blowing ratios of 0.5 and 1, respectively.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical study on the effects of sister holes locations on film cooling performance is presented. This includes the change of the location of the individual discrete sister holes in the streamwise and spanwise directions, where each one of these directions includes 9 different locations, The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The variation of the sister holes in the streamwise direction provides similar film cooling performance as the base case for both blowing ratios of 0.5 and 1. On the other hand, the spanwise variation of the sister holes’ location has a more prominent effect on the effectiveness. In some cases, as a result of the anti-vortices generated from the sister holes and the repositioning of the sister holes in the spanwise direction, the jet lift-off effect notably decreases and more volume of coolant is distributed in the spanwise direction.


Author(s):  
Qingzong Xu ◽  
Qiang Du ◽  
Pei Wang ◽  
Jun Liu ◽  
Guang Liu

High inlet temperature of turbine vane increases the demand of high film cooling effectiveness. Vane endwall region was extensively cooled due to the high and flat exit temperature distribution of combustor. Leakage flow from the combustor-turbine gap was used to cool the endwall region except for preventing hot gas ingestion. Numerical predictions were conducted to investigate the flow structure and adiabatic film cooling effectiveness of endwall region in a linear cascade with vane-endwall junction fillet. The simulations were completed by solving the three-dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with shear stress transport(SST) k-ω turbulence model, meanwhile, the computational method and turbulence model were validated by comparing computational result with the experiment. Three types of linear fillet with the length-to-height ratio of 0.5, 1 and 2, named fillet A, fillet B and fillet C respectively, were studied. In addition, circular fillet with radius of 2mm was compared with linear fillet B. The interrupted slot, produced by changing the way of junction of combustor and turbine vane endwall, is introduced at X/Cax = −0.2 upstream of the vane leading edge. Results showed that fillet can significantly affect the cooling performance on the endwall due to suppressing the strength of the secondary flow. Fillet C presented the best cooling performance comparing to fillet A and fillet B because a portion of the coolant which climbs to the fillet was barely affected by secondary flow. Results also showed the effect of fillet on the total pressure loss. The result indicated that only fillet A slightly decreases endwall loss.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

Secondary holes to a main film cooling hole are used to improve film cooling performance by creating anti-kidney vortices. The effects of injection angle of the secondary holes on both film cooling effectiveness and surrounding thermal and flow fields are investigated in this numerical study. Two kinds of primary hole shapes are adopted. One is a cylindrical hole, the other is a horn-shaped hole which is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. Two smaller cylindrical holes, the secondary holes, are located symmetrically about the centerline and downstream of the primary hole. Three compound injection angles (α = 30°, 45° and 60°, β = 30°) of the secondary holes are analyzed while the injection angle of the primary hole is kept at 45°. Cases with various blowing ratios are computed. It is shown from the simulation that cooling effectiveness of secondary holes with a horn-shaped primary hole is better than that with a cylindrical primary hole, especially at high blowing ratios. With a cylindrical primary hole, increasing inclination angle of the secondary holes provides better cooling effectiveness because the anti-kidney vortices created by shallow secondary holes cannot counteract the kidney vortex pairs adequately, enhancing mixing of main flow and coolant. For secondary holes with a horn-shaped primary hole, large secondary hole inclination angles provide better cooling performance at low blowing ratios; but, at high blowing ratios, secondary holes with small inclination angles are more effective, as the film coverage becomes wider in the downstream area.


Sign in / Sign up

Export Citation Format

Share Document