scholarly journals Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils

Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Marco Pievaroli ◽  
Lorenzo Tarchi ◽  
Alberto Ceccherini ◽  
...  

Matrix cooling systems are relatively unknown among gas turbines manufacturers of the western world. In comparison to conventional turbulated serpentines or pin-fin geometries, a lattice-matrix structure can potentially provide higher heat transfer enhancement levels with similar overall pressure losses. This experimental investigation provides heat transfer distribution and pressure drop of four different lattice-matrix geometries with crossing angle of 45 deg between ribs. The four geometries are characterized by two different values of rib height which span from a possible application in the mid chord region up to the trailing edge region of a gas turbine airfoil. For each rib height two different configurations have been studied: one having four entry channels and lower rib thickness (open area 84.5%), one having six entry channels and higher rib thickness (open area 53.5%). Experiments were performed varying the Reynolds number Res, based on the inlet sub-channel hydraulic diameter, from 2000 to 12000. Heat transfer coefficients were measured using steady state tests and applying a regional average method; test models have been divided into 20 stainless steel elements in order to have a Biot number similitude with real conditions. Elements are 10 per side, 5 in the main flow direction and 2 in the tangential one. Metal temperature was measured with embedded thermocouples and 20 thin-foil heaters were used to provide a constant heat flux during each test. A specific data reduction procedure has been developed so as to take into account the fin effectiveness and the increased heat transfer surface area provided by the ribs. Pressure drops were also evaluated measuring pressure along the test models. Uniform streamwise distributions of Nusselt number Nus have been obtained for each Reynolds number. Measurements show that the heat transfer enhancement level Nus/Nu0 decreases with Reynolds but is always higher than 2. Results have been compared with previous literature data on similar geometries and show a good agreement.

2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Marco Pievaroli ◽  
Lorenzo Tarchi ◽  
Alberto Ceccherini ◽  
...  

Matrix cooling systems are relatively unknown among gas turbines manufacturers of the western world. In comparison to conventional turbulated serpentines or pin–fin geometries, a lattice–matrix structure can potentially provide higher heat transfer enhancement levels with similar overall pressure losses. This experimental investigation provides heat transfer distribution and pressure drop of four different lattice–matrix geometries with crossing angle of 45 deg between ribs. The four geometries are characterized by two different values of rib height, which span from a possible application in the midchord region up to the trailing edge region of a gas turbine airfoil. For each rib height, two different configurations have been studied: one having four entry channels and lower rib thickness (open area 84.5%), one having six entry channels and higher rib thickness (open area 53.5%). Experiments were performed varying the Reynolds number Res, based on the inlet subchannel hydraulic diameter, from 2000 to 12,000. Heat transfer coefficients (HTCs) were measured using steady state tests and applying a regional average method; test models have been divided into 20 stainless steel elements in order to have a Biot number similitude with real conditions. Elements are 10 per side, five in the main flow direction, and two in the tangential one. Metal temperature was measured with embedded thermocouples, and 20 thin-foil heaters were used to provide a constant heat flux during each test. A specific data reduction procedure has been developed so as to take into account the fin effectiveness and the increased heat transfer surface area provided by the ribs. Pressure drops were also evaluated measuring pressure along the test models. Uniform streamwise distributions of Nusselt number Nus have been obtained for each Reynolds number. Measurements show that the heat transfer enhancement level Nus/Nu0 decreases with Reynolds but is always higher than 2. Results have been compared with previous literature data on similar geometries and show a good agreement.


2020 ◽  
Author(s):  
Xiuping Chen ◽  
Jiabing Wang ◽  
Kun Yang

Abstract Dimple on the surface is widely used in electronic cooling equipment, turbine blades, and combustion chamber gaskets and so on, which is a good structure for heat transfer enhancement. In this paper, taking comprehensive performance parameters of flow and heat transfer PEC as an evaluation parameter, numerical simulation and multi-island genetic algorithm are combined to optimize the shape of the dimple in microchannel under fully developed laminar condition. The results show that the optimal dimple is asymmetric along the flow direction, and the deepest position of which shifts downstream, which is dependent on the Reynolds number, the dimple diameter, and the periodic length. With the increase of the Reynolds number and the dimple diameter, the Nusselt number ratio, the Fanning fraction factor ratio, and the comprehensive performance parameter PEC increase for the optimal dimple. The separation of the fluid in the front edge of dimple is not conducive to heat transfer. The number and size of the vortex, the impact and the reattachment are found to be the key factors affecting the heat transfer in the dimple. As the periodic length L of the heat transfer unit decreases, the heat transfer is enhanced and the flow resistance increases, and the comprehensive performance of the microchannel becomes better.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3723
Author(s):  
Barah Ahn ◽  
Vikram C. Patil ◽  
Paul I. Ro

Heat transfer enhancement techniques used in liquid piston gas compression can contribute to improving the efficiency of compressed air energy storage systems by achieving a near-isothermal compression process. This work examines the effectiveness of a simultaneous use of two proven heat transfer enhancement techniques, metal wire mesh inserts and spray injection methods, in liquid piston gas compression. By varying the dimension of the inserts and the pressure of the spray, a comparative study was performed to explore the plausibility of additional improvement. The addition of an insert can help abating the temperature rise when the insert does not take much space or when the spray flowrate is low. At higher pressure, however, the addition of spacious inserts can lead to less efficient temperature abatement. This is because inserts can distract the free-fall of droplets and hinder their speed. In order to analytically account for the compromised cooling effects of droplets, Reynolds number, Nusselt number, and heat transfer coefficients of droplets are estimated under the test conditions. Reynolds number of a free-falling droplet can be more than 1000 times that of a stationary droplet, which results in 3.95 to 4.22 times differences in heat transfer coefficients.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


2021 ◽  
pp. 1-28
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract The study presents the investigation on heat transfer distribution along a gas turbine blade internal cooling channel. Six different cases were considered in this study, using the smooth surface channel as a baseline. Three different dimples depth-to-diameter ratios with 0.1, 0.25, and 0.50 were considered. Different combinations of partial spherical and leaf dimples were also studied with the Reynolds numbers of 6,000, 20,000, 30,000, 40,000, and 50,000. In addition to the experimental investigation, the numerical study was conducted using Large Eddy Simulation (LES) to validate the data. It was found that the highest depth-to-diameter ratio showed the highest heat transfer rate. However, there is a penalty for increased pressure drop. The highest pressure drop affects the overall thermal performance of the cooling channel. The results showed that the leaf dimpled surface is the best cooling channel based on the highest Reynolds number's heat transfer enhancement and friction factor. However, at the lowest Reynolds number, partial spherical dimples with a 0.25 depth to diameter ratio showed the highest thermal performance.


Author(s):  
Jiangnan Zhu ◽  
Tieyu Gao ◽  
Jun Li ◽  
Guojun Li ◽  
Jianying Gong

The secondary flow which is generated by the angled rib is one of the key factors of heat transfer enhancement in gas turbine blade cooling channels. However, the current studies are all based on the velocity vector and streamline, which limit the research on the detailed micro-structure of secondary flow. In order to make further targeted optimization on the flow and heat transfer in the cooling channels of gas turbine blade, it is necessary to firstly investigate the generation, interaction, dissipation and the influence on heat transfer of secondary flow with the help of new topological method. This paper reports the numerical study of the secondary flow and the effect of secondary flow on heat transfer enhancement in rectangular two-pass channel with 45° ribs. Based on the vortex core technology, the structure of secondary flow can be clearly shown and studied. The results showed that the main flow secondary flow is thrown to the outer side wall after the corner due to the centrifugal force. Then it is weakened in the second pass and a new main flow secondary flow is generated at the same time near the opposite side wall in the second pass. The Nusselt number distribution has also been compared with the secondary flow vortex core distribution. The results shows that the heat transfer strength is weakened in the second pass due to the interaction between the old main flow secondary flow and the new one. These two secondary flows are in opposite rotation direction, which reduces the disturbance and mass transfer strength in the channel.


Author(s):  
T. I.-P. Shih ◽  
C.-S. Lee ◽  
K. M. Bryden

Almost all measurements of the heat-transfer coefficient (HTC) or Nusselt number (Nu) in gas-turbine cooling passages with heat-transfer enhancement features such as pin fins and ribs have been made under conditions, where the wall-to-bulk temperature, Tw/Tb, is near unity. Since Tw/Tb in gas-turbine cooling passages can be as high as 2.2 and vary appreciably along the passage, this study examines if it is necessary to match the rate of change in Tw/Tb when measuring Nu, whether Nu measured at Tw/Tb near unity needs to be scaled before used in design and analysis of turbine cooling, and could that scaling for ducts with heat-transfer enhancement features be obtained from scaling factors for smooth ducts because those scaling factors exist in the literature. In this study, a review of the data in the literature shows that it is unnecessary to match the rate of change in Tw/Tb for smooth ducts at least for the rates that occur in gas turbines. For ducts with heat-transfer enhancement features, it is still an open question. This study also shows Nu measured at Tw/Tb near unity needs to be scale to the correct Tw/Tb before it can be used for engine conditions. By using steady RANS analysis of the flow and heat transfer in a cooling channel with a staggered array of pin fins, the usefulness of the scaling factor, (Tw/Tb)r, from the literature for smooth ducts was examined. Nuengine, computed under engine conditions, was compared with those computed under laboratory conditions, Nulab, and scaled by (Tw/Tb)r; i.e., Nulab,scaled = Nulab (Tw/Tb)r. Results obtained show the error in Nulab,scaled relative to Nuengine can be as high as 36.6% if r = −0.7 and Tw/Tb = 1.573 in the “fully” developed region. Thus, (Tw/Tb)r based on smooth duct should not be used as a scaling factor for Nu in cooling passages with heat-transfer enhancement features. To address this inadequacy, a method is proposed for generating scaling factors, and a scaling factor was developed to scale the heat transfer from laboratory to engine conditions for a channel with pin fins.


Author(s):  
Samsul Islam ◽  
Md. Shariful Islam ◽  
Mohammad Zoynal Abedin

The heat transfer enhancement is recycled in many engineering uses such as heat exchangers, refrigeration and air conditioning structures, chemical apparatuses, and automobile radiators. Hence many enhancing extended fin patterns are developed and used. In multi louvered fin, in this segment for multi-row fin and tube heat exchanger, an increase in heat transfer enhancement is found 58% for ReH = 350. When the Reynolds number is 1075, the temperature gradient is more distinct for greater louver angle that is the higher heat transfer enhanced for large louver angle. For variable louver angle heat exchanger, the maximum heat transfer improvement achieved by 118% Reynolds number at 1075. In the vortex generator for the delta winglet vortex generator, the extreme enhancement of heat transfer increased to 16% compared to the baseline geometry (at ReDh = 600). For a compact louvered heat exchanger, the results showed that a regular arrangement of louvered fins gives a 9.3% heat transfer improvement. In multi-region louver fins and flat tubes heat exchanger, the louver fin with 4 regions and the louver fin with 6 regions are far better than the conventional fin in overall performance. At the same time, the louver fin with 6 regions is also better than the louver fin with 4-region. The available work is in experimental form as well as numerical form performed by computational fluid dynamics.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sébastien Kunstmann ◽  
Jens von Wolfersdorf ◽  
Uwe Ruedel

An investigation was conducted to assess the thermal performance of W-shaped, 2W-shaped and 4W-shaped ribs in a rectangular channel. The aspect ratios (W/H) were 2:1, 4:1, and 8:1. The ribs were located on one channel wall. The rib height (e) was kept constant with a rib height-to-hydraulic diameter ratio (e/Dh) of 0.02, 0.03, and 0.06. The rib pitch-to-height ratio (P/e) was 10. The Reynolds numbers investigated (Re > 90 000) are typical for combustor liner cooling configurations of gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The rib configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement is obtained by rib configurations with a rib section-to-channel height ratio (Wr/H) of 1:1. W-shaped ribs achieve the highest heat transfer enhancement levels in channels with an aspect ratio of 2:1, 2W-shaped ribs in channels with an aspect ratio of 4:1 and 4W-shaped ribs in channels with an aspect ratio of 8:1. Furthermore, the pressure loss increases with increasing complexity of the rib geometry and blockage ratio.


Sign in / Sign up

Export Citation Format

Share Document