Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition: Part II — Influence of Purge and Film Cooling Injection

Author(s):  
G. Barigozzi ◽  
H. Abdeh ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of the presence of an inlet flow non uniformity on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out with platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. An obstruction was installed upstream of the cascade at variable tangential and axial position to generate a flow non uniformity. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition. Aero-thermal characterization of vane platform was obtained through 5-hole probe and end wall adiabatic film cooling effectiveness measurements. Results show a relevant negative impact of inlet flow non uniformity on the cooled cascade aerodynamic and thermal performance. Higher film cooling effectiveness and lower aerodynamic losses are obtained when the inlet flow non uniformity is located at mid pitch, while lower effectiveness and higher losses are obtained when it is aligned to the vane leading edge. Moving the non uniformity axially or changing its blockage only marginally influences the platform thermal protection.

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
G. Barigozzi ◽  
H. Abdeh ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of the presence of an inlet flow nonuniformity on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out with platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. An obstruction was installed upstream of the cascade at variable tangential and axial position to generate a flow nonuniformity. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition. Aerothermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Results show a relevant negative impact of inlet flow nonuniformity on the cooled cascade aerodynamic and thermal performance. Higher film cooling effectiveness and lower aerodynamic losses are obtained when the inlet flow nonuniformity is located at midpitch, while lower effectiveness and higher losses are obtained when it is aligned to the vane leading edge. Moving the nonuniformity axially or changing its blockage only marginally influences the platform thermal protection.


Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

Abstract In the present paper, the influence of inlet flow incidence on the thermal performance of a film cooled linear nozzle vane cascade is assessed. Tests have been carried out on a cooled cascade, featuring a showerhead cooling system made of 4 rows of cylindrical holes. The cascade was tested by varying the inlet flow angle in the range ±20° at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12. The thermal characterization of vane leading edge region was obtained through adiabatic film cooling effectiveness measurements. Vane load distributions supported the discussion of the results. Varying the incidence angle in either positive or negative angles, the thermal protection on the vane is reduced while the maximum protection happened at 0° incidence case.


Author(s):  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, aerodynamic and thermal performance of a linear nozzle vane cascade is fully assessed. Tests have been carried out with and without platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at variable cooling injection conditions. Aero-thermal characterization of vane platform was obtained through 5-hole probe measurements, oil & dye surface flow visualizations, measurements of end wall adiabatic film cooling effectiveness and heat transfer coefficient. The platform cooling scheme operated at nominal injection rate was shown to effectively reduce the heat load over most of the platform surface, with only a small increase in secondary flows loss. Combustor holes injection resulted beneficial in controlling momentum of coolant approaching the cascade, thus limiting the secondary flows growth and resulting in an increase of the coolant film length inside of the passage.


Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of inlet flow incidence on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out on a solid and a cooled cascade. In the cooled cascade, coolant is ejected at the end wall through a slot located upstream of the leading edge plane. Moreover, a vane showerhead cooling system is also realized through 4 rows of cylindrical holes. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition, varying the inlet flow angle in the range ±20°. The aero-thermal characterization of vane platform was obtained through 5-hole probe and end wall adiabatic film cooling effectiveness measurements. Vane load distributions and surface flow visualizations supported the discussion of the results. A relevant negative impact of positive inlet flow incidence on the cooled cascade aerodynamic and thermal performance was detected. A negligible influence was instead observed at negative incidence, even at the lowest tested value of −20°.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
A. Perdichizzi ◽  
M. Henze ◽  
J. Krueckels

In the present paper, the influence of inlet flow incidence on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out on a solid and a cooled cascade. In the cooled cascade, coolant is ejected at the end wall through a slot located upstream of the leading edge plane. Moreover, a vane showerhead cooling system is also realized through four rows of cylindrical holes. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition, varying the inlet flow angle in the range ±20 deg. The aero-thermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Vane load distributions and surface flow visualizations supported the discussion of the results. A relevant negative impact of positive inlet flow incidence on the cooled cascade aerodynamic and thermal performance was detected. A negligible influence was instead observed at negative incidence, even at the lowest tested value of −20 deg.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Author(s):  
Shantanu Mhetras ◽  
Je-Chin Han ◽  
Ron Rudolph

The effect of film cooling holes placed along the span of a fully-cooled high pressure turbine blade in a stationary, linear cascade on film cooling effectiveness is studied using the Pressure Sensitive Paint (PSP) technique. Effect of showerhead injection at the leading edge and the presence of compound angled, diffusing holes on the pressure and suction side are also examined. Six rows of compound angled shaped film cooling holes are provided on the pressure side while four such rows are provided on the suction side of the blade. The holes have a laidback and fan-shaped diffusing cross-section. Another three rows of cylindrical holes are drilled at a typical angle on the leading edge to capture the effect of showerhead film coolant injection. The film cooling hole arrangement simulates a typical film cooled blade design used in stage 1 rotor blades for gas turbines used for power generation. A typical blowing ratio is defined for each film hole row and tests are performed for 100%, 150% and 200% of this typical value. Tests are performed for inlet Mach numbers of 0.36 and 0.45 with corresponding exit Mach numbers of 0.51 and 0.68 respectively. The flow remains subsonic in the throat region for both Mach numbers. The corresponding free stream Reynolds number, based on the axial chord length and the exit velocity, are 1.3 million and 1.74 million respectively. Freestream turbulence intensity level at the cascade inlet is 6%. Results show that varying blowing ratios can have a significant impact on film-cooling effectiveness distribution. Large spanwise variations in effectiveness distributions are also observed. Similar distributions were observed for both Mach numbers.


Author(s):  
Ryan D. Erickson ◽  
Terrence W. Simon ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

An experimental study is carried out in a stationary linear cascade which simulates a turbine rotor to compare the thermal performance of two new axisymmetric endwall contour geometries. Measurements of endwall adiabatic film cooling effectiveness and near-endwall passage temperature fields are made for this purpose. In addition to documenting endwall contouring effects, a range of disc cavity leakage flow rates is investigated. This information is meant to quantify, over the range tested, the benefits and penalties of introducing leakage flow into the passage using the designated endwall contouring. Special attention is paid to determine whether the endwall curvature has any effect on the interaction between mainstream and secondary flows within the passage. Results indicate improved thermal performance when strong endwall curvature exists near the blade leading edge. The strong curvature causes cavity leakage flow to remain closer to the endwall, thereby increasing cooling effectiveness.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The present study concentrates on the numerical investigation of a cooled trailing edge in a linear nozzle vane cascade typical of a high-pressure turbine. The trailing edge cooling features a pressure side cutback with film cooling slots, stiffened by evenly spaced ribs in an inline configuration. Cooling air is also ejected through two rows of cooling holes placed on the pressure side, upstream of the cutback. The main goal is to evaluate the reliability of RANS predictions in such a complex cooling system. Different coolant-to-mainstream mass flow ratio values up to MFR = 2.8% were simulated at exit Mach number of M2is = 0.2. The computed performance of the trailing edge cooling scheme was compared to available measurements of: holes and cutback exit velocity and discharge behavior; boundary layer along traverses located on the pressure side, downstream of each row of cooling holes and approaching the trailing edge; adiabatic film cooling effectiveness. Special emphasis was dedicated to coolant-mainstream interaction and film cooling effectiveness over the pressure surface of the vane. Despite the steady approach, the simulations provided a reliable overview of coolant and mainstream aerodynamic features. The limitations in predicting the measured drop in cooling effectiveness toward the trailing edge were highlighted as well.


Author(s):  
Zhi Tao ◽  
Zhendong Guo ◽  
Liming Song ◽  
Jun Li

Abstract With the continuous increase of aerodynamic and thermal load, the endwall of modern gas turbines has become the critical region affected by the uncertainties in the manufacturing and operation process and thus is very likely to suffer performance degradation and thermal failure. Therefore, it is critical to understand and quantify the impacts of uncertainty factors on endwall aero-thermal performance. Based on Kriging surrogate, the frameworks of uncertainty quantification and global sensitivity analysis are constructed for a gas turbine blade endwall. The impacts of slot geometry deviations (slot width, endwall misalignment) and mainstream condition fluctuations (turbulence intensity, inlet flow angle) on endwall aero-thermal performance are quantified and analyzed. Results show that the actual performance of the endwall has a high probability of deviating from its nominal value. With respect to the nominal values, the maximum deviations of aerodynamic losses, averaged film cooling effectiveness and averaged Nusselt number reach up to 0.33%, 45% and 5.0%, respectively. The critical regions which are most sensitive to the input uncertainty parameters are identified. Furthermore, the inlet flow angle is proved to be the most significant parameter affecting the endwall aero-thermal performance through sensitivity analysis. The influence mechanisms of the inlet flow angle on endwall aero-thermal performance are clarified by detailed flow and thermal field analysis. Results show that the inlet flow angle significantly alters the size and strength of the secondary flow structures, resulting in a large variation of endwall aero-thermal performance. Quantitatively, a positive incidence angle of 2 degrees can lead to a 0.1% reduction of total pressure coefficient, a 12% reduction of averaged film cooling effectiveness and a 2% enhancement of averaged Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document