Structure of Diffuser Stall and Unsteady Vortices in a Centrifugal Compressor With Vaned Diffuser

Author(s):  
Nobumichi Fujisawa ◽  
Sota Ikezu ◽  
Yutaka Ohta

The characteristics of a diffuser rotating stall and the evolution of a vortex generated on the diffuser leading edge (i.e., leading-edge vortex (LEV)) in a centrifugal compressor were investigated using experiments and numerical analyses. The experimental results showed that both impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. Both the stall cells existed only on the shroud side of the flow passages, which is in close proximity to the source location of the LEV. The numerical results showed that the LEV is a combination of a separated vortex near the leading edge and the extended tip-leakage flow from the impeller. In the partial flow operation, the LEV develops as the velocity decreases in the diffuser passages and forms a huge flow blockage within the diffuser passages. Therefore, the LEV may be considered to be one of the causes of diffuser stall in the centrifugal compressor.

Author(s):  
Nobumichi Fujisawa ◽  
Daiki Ema ◽  
Yutaka Ohta

In this study, the unsteady behavior of a diffuser rotating stall in a centrifugal compressor with a vaned diffuser was investigated through experiments and numerical analyses. From the casing static pressure measurements, it was determined that the diffuser stall propagated at 25% of impeller rotational speed in the vaneless space. The numerical results revealed the presence of a typical vortical structure on the diffuser’s leading edge. Under partial flow condition, a tornado-type vortex was generated on the diffuser’s leading edge. Furthermore, a longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV)) was induced by the rolling-up flow on the diffuser suction surface. As the velocity was decreased, the development of the tornado-type vortex and LEV forms a substantial flow blockage within the diffuser passages. Furthermore, the diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, LEV, and vortex in the throat area of diffuser passages. In addition to this, the developed LEV interacted with the next diffuser leading edge and formed the throat area blockage with the passage of time. Then, the tornado-type vortex and LEV developed by the throat area blockage and diffuser stall cell, which was caused by the systematic vortical structure, propagated to the succeeding diffuser vane. Therefore, the diffuser stall in the centrifugal compressor was caused by the evolution of the tornado-type vortex and LEV.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jonathan N. Everitt ◽  
Zoltán S. Spakovszky

In compression systems, the stable operating range is limited by rotating stall and/or surge. Two distinct types of stall precursors can be observed prior to full scale instability: the development of long-wavelength modal waves or a short-wavelength, three-dimensional flow breakdown (so-called “spike” stall inception). The cause of the latter is not well understood; in axial machines it has been suggested that rotor blade-tip leakage flow plays an important role, but spikes have recently been observed in shrouded vaned diffusers of centrifugal compressors where these leakage flows are not present, suggesting an alternative mechanism may be at play. This paper investigates the onset of instability in a shrouded vaned diffuser from a highly loaded turbocharger centrifugal compressor and discusses the mechanisms thought to be responsible for the development of short-wavelength stall precursors. The approach combines unsteady 3D RANS simulations of an isolated vaned diffuser with previously obtained experimental results. The unsteady flow field simulation begins at the impeller exit radius, where flow is specified by a spanwise profile of flow angle and stagnation properties, derived from single-passage stage calculations but with flow pitchwise mixed. Through comparison with performance data from previous experiments and unsteady full-wheel simulations, it is shown that the diffuser is accurately matched to the impeller and the relevant flow features are well captured. Numerical forced response experiments are carried out to determine the diffuser dynamic behavior and point of instability onset. The unsteady simulations demonstrate the growth of short-wavelength precursors; the flow coefficient at which these occur, the rotation rate and circumferential extent agree with experimental measurements. Although the computational setup and domain limitations do not allow simulation of the fully developed spike nor full-scale instability, the model is sufficient to capture the onset of instability and allows the postulation of the following necessary conditions: (i) flow separation at the diffuser vane leading edge near the shroud endwall; (ii) radially reversed flow allowing vorticity shed from the leading edge to convect back into the vaneless space; and (iii) recirculation and accumulation of low stagnation pressure fluid in the vaneless space, increasing diffuser inlet blockage and leading to instability. Similarity exists with axial machines, where blade-tip leakage sets up endwall flow in the circumferential direction leading to flow breakdown and the inception of rotating stall. Rather than the tip leakage flows, the cause for circumferential endwall flow in the vaned diffuser is the combination of high swirl and the highly nonuniform spanwise flow profile at the impeller exit.


Author(s):  
Nobumichi Fujisawa ◽  
Shotaro Hara ◽  
Yutaka Ohta ◽  
Takashi Goto

Experiments and numerical analyses were used to investigate the unsteady behavior of a vortex generated on the leading-edge of a diffuser (i.e., leading-edge vortex (LEV)) and the diffuser stall inception in a centrifugal compressor equipped with vaned diffusers. The LEV is distinct from the separation vortex of the diffuser’s leading edge and passage vortex of the diffuser; it is generated by the accumulation of vortices caused by the velocity gradient of the impeller discharge flow. The LEV increases with decreasing velocity in the diffuser passage and forms a huge flow blockage within the diffuser passage. Therefore, the LEV may help cause the diffuser stall inception in the centrifugal compressor. A diffuser vane, that was tapered only on the hub side was designed and used in the experiment. The results of the computational fluid dynamics analysis and experiments showed that the tapered diffuser vane can suppress LEV evolution during off-design operations. Therefore, the tapered diffuser vane may control the diffuser stall inception in a centrifugal compressor by suppressing LEV evolution.


Author(s):  
J. N. Everitt ◽  
Z. S. Spakovszky

In compression systems the stable operating range is limited by rotating stall and/or surge. Two distinct types of stall precursors can be observed prior to full scale instability: the development of long-wavelength modal waves or a short-wavelength, three-dimensional flow breakdown (so-called “spike” stall inception). The cause of the latter is not well understood; in axial machines it has been suggested that rotor blade-tip leakage flow plays an important role, but spikes have recently been observed in shrouded vaned diffusers of centrifugal compressors where these leakage flows are not present, suggesting an alternative mechanism may be at play. This paper investigates the onset of instability in a shrouded vaned diffuser from a highly loaded turbocharger centrifugal compressor and discusses the mechanisms thought to be responsible for the development of short-wavelength stall precursors. The approach combines unsteady 3D RANS simulations of an isolated vaned diffuser with previously obtained experimental results. The unsteady flow field simulation begins at the impeller exit radius, where flow is specified by a spanwise profile of flow angle and stagnation properties, derived from single-passage stage calculations but with flow pitchwise mixed. Through comparison with performance data from previous experiments and unsteady full-wheel simulations, it is shown that the diffuser is accurately matched to the impeller and the relevant flow features are well captured. Numerical forced response experiments are carried out to determine the diffuser dynamic behavior and point of instability onset. The unsteady simulations demonstrate the growth of short-wavelength precursors; the flow coefficient at which these occur, the rotation rate and circumferential extent agree with experimental measurements. Although the computational setup and domain limitations do not allow simulation of the fully developed spike nor full-scale instability, the model is sufficient to capture the onset of instability and allows the postulation of the following necessary conditions: (i) flow separation at the diffuser vane leading edge near the shroud endwall; (ii) radially reversed flow allowing vorticity shed from the leading edge to convect back into the vaneless space; and (iii) recirculation and accumulation of low stagnation pressure fluid in the vaneless space, increasing diffuser inlet blockage and leading to instability. Similarity exists with axial machines, where blade-tip leakage sets up endwall flow in the circumferential direction leading to flow breakdown and the inception of rotating stall. Rather than the tip leakage flows, the cause for circumferential endwall flow in the vaned diffuser is the combination of high swirl and the highly non-uniform spanwise flow profile at the impeller exit.


Author(s):  
Yang Zhao ◽  
Jiayi Zhao ◽  
Zhiheng Wang ◽  
Guang Xi

The diffuser rotating stall in a centrifugal compressor with vaned diffuser is one of important unsteady flow phenomena, which limits the operating range of the compressor. In this paper, the unsteady CFD analysis on a low-speed centrifugal compressor has been performed to investigate the flow characteristic in the diffuser and the propagation of the diffuser rotating stall. The flow behaviors at the outlet of the impeller at design and off-design conditions are firstly investigated. It is found that a reversal flow, induced by the tip leakage flow, exists near the shroud at the impeller outlet and becomes serious with the mass flow rate reduced. Due to the span-wise variation of the flow angle at the diffuser inlet and the inversed pressure gradient in the passage, the leading-edge vortex (LEV) generates on the diffuser leading edge. The LEV then induces the secondary flow in the diffuser passage and then causes the hub-corner separation. Furthermore, the propagation of the diffuser rotating stall is presented in details. The suction-side separation near the hub induces the blockage in the passage. And the shedding vortex from the suction side moves toward the leading edge of the adjacent blade. When the vortex reaches to the leading edge of the adjacent blade, the incidence increase and a new separation occurs on the suction side. With the development of the new separation, the passage becomes blocked gradually and the upstream stalled passage recovers to a normal condition. The rotating stall propagates along the direction of the impeller rotation at about 4.5% of the impeller rotational speed.


Author(s):  
Julissa Grondin ◽  
Isabelle Trébinjac ◽  
Nicolas Rochuon

The subject of the paper is a high speed unshrouded centrifugal compressor in which rotating instabilities have been measured near the stage stall point. The impeller is studied numerically by means of unsteady RANS simulations, and the results are compared to experimental measurements. Instead of rotating instabilities, the numerical results directly capture a rotating stall pattern in which a tornado-like separation vortex is shed due to a separation at the impeller leading edge, and propagates around the circumference. The vortex has one end attached to the casing and the other end attached to the pressure side of the blade. Its propagation speed is within 10% from the measured speed of the rotating instabilities. Because of the high pressure gradient the tip leakage flow crosses the impeller front and thus convects the vortex in front of the adjacent blade. The spillage of the vortex in the adjacent channel convects radial and azimuthal vorticity onto the next blade. This triggers the inception of a new vortex, and induces the propagation of the rotating stall cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nobumichi Fujisawa ◽  
Yutaka Ohta

The transition process from a diffuser rotating stall to a stage stall in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analyses. From the velocity measurements, it was found that the rotating stall existed on the shroud side of the diffuser passage in the off-design flow condition. The numerical results revealed the typical vortical structure of the diffuser stall. The diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, the longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV)), and the vortex in the throat area of the diffuser passages. Furthermore, the stage stall, which rotated within both the impeller and diffuser passages, occurred instead of the diffuser stall as the mass flow rate was decreased. According to the velocity measurements at the diffuser inlet, the diffuser stall which rotated on the shroud side was shifted to the hub side. Then, the diffuser stall moved into the impeller passages and formed the stage stall. Therefore, the stage stall was caused by the development of the diffuser stall, which transferred from the shroud side to the hub side in the vaneless space and expanded to the impeller passages.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Yohei Morita ◽  
Nobumichi Fujisawa ◽  
Takashi Goto ◽  
Yutaka Ohta

The effects of the diffuser vane geometries on the compressor performance and noise characteristics of a centrifugal compressor equipped with vaned diffusers were investigated by experiments and numerical techniques. Because we were focusing attention on the geometries of the diffuser vane’s leading edge, diffuser vanes with various leading edge geometries were installed in a vaned diffuser. A tapered diffuser vane with the tapered portion near the leading edge of the diffuser’s hub-side could remarkably reduce both the discrete frequency noise level and broadband noise level. In particular, a hub-side tapered diffuser vane with a taper on only the hub-side could suppress the development of the leading edge vortex (LEV) near the shroud side of the diffuser vane and effectively enhanced the compressor performance.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


Sign in / Sign up

Export Citation Format

Share Document