Integration of Modern F, G, H and J Class in Combined Cycle Applications: An EPC Contractor Perspective

Author(s):  
Justin Zachary ◽  
Vinod Kallianpur ◽  
Byungsik So

The traditional approach for developing new and upgrade model large frame industrial gas turbines is changing rather dramatically. Large industrial gas turbine design evolutions have typically been built around a basic core design concept that remained unchanged. The departure from tradition has been, in some cases, sparked by the merger between erstwhile competitors. Thus the models that follow a merger benefit from leveraging the best of available knowledge from both companies: specialized design methods, manufacturing practices, materials, combustion, etc. Another recent trend in GT development is to transfer select portions of design concepts and related experience, and integrate that knowledge into a new model. Both these trajectories of development involve some changes to the core design reference architecture: e.g. number of rows in turbine section, rotor design architecture, flow path shape, blade locking approach, exhaust diffuser, inlet scroll, etc., and needing more attention to detail by the EPC for being able to meet the customer expectations for life cycle costs, performance degradation, reliability and availability. The expanded technical capability of the OEMs to accelerate new technical innovations for propelling the next economic growth engine is indeed a very exciting prospect for EPC contractors. Already, modern “H” and “J” class gas turbines are commercially available for over 60 per cent net efficiency in combined cycle power plant application. This paper shares an EPC contractor’s experience in developing Combined Cycle Power Plants with two advanced commercially available gas turbine models in Korea (Mitsubishi’s M501J model) and Malaysia (Siemens SGT. 5-8000H model).

Author(s):  
Adrian Dahlquist ◽  
Magnus Genrup

The oxy-fuel combined cycle (OCC) is one of several carbon capture and sequestration (CCS) technologies being developed to reduce CO2 emissions from thermal power plants. The OCC consists of a semi-closed topping Bryton cycle, and a traditional bottoming Rankine cycle. The topping cycle operates with a working medium mixture of mainly CO2 and H2O. This CO2-rich working fluid has significantly different gas properties compared to a conventional open gas turbine cycle, which thereby affects the aerodynamic turbine design for the gas turbine units. The aerodynamic turbine design for oxy-fuel gas turbines is an unexplored research field. The topic of this study was therefore to investigate the aerodynamic turbine design of turbines operating with a CO2-rich working fluid. The investigation was performed through a typical turbine aero-design loop, which covered the 1D mid-span, 2D through-flow, 3D blade profiling design and the steady-state 3D analysis. The design was performed through the use of conventional design methods and criteria in order to investigate if any significant departures from conventional turbine design methods were required. The survey revealed some minor deviations in design considerations, yet it showed that the design is feasible with today’s state-of-the-art technology by using conventional design practice and methods. The performance of the oxy-fuel combined cycle was revised based on the performance figures from the components design. The expected total performance figures for the oxy-fuel combined cycle were calculated to be a net electrical power of 119.9 MW and a net thermal efficiency of 48.2%. These figures include the parasitic consumption for the oxygen production required for the combustion and the CO2 compression of the CO2 bleed stream.


Author(s):  
P. J. Dechamps

The last decade has seen remarkable improvements in industrial gas turbine size and performances. There is no doubt that the coming years are holding the promises of even more progress in these fields. As a consequence, the fuel utilization achieved by combined cycle power plants has been steadily increased. This is however also because of the developments in the heat recovery technology. Advances on the gas turbine side justify the development of new combined cycle schemes, with more advanced heat recovery capabilities. Hence, the system performance is spiralling upwards. In this paper, we look at some of the heat recovery possibilities with the newly available gas turbine engines, characterized by a high exhaust temperature, a high specific work, and the integration of some gas turbine cooling with the boiler. The schemes range from classical dual pressure systems, to triple pressure systems with reheat in supercritical steam conditions. For each system, an optimum set of variables (steam pressures, etc) is proposed. The effect of some changes on the steam cycle parameters, like increasing the steam temperatures above 570°C are also considered. Emphasis is also put on the influence of some special features or arrangements of the heat recovery steam generators, not only from a thermodynamic point of view.


Author(s):  
Harry B. Gayley

Reliability and improvements in industrial gas turbines are closely related to the materials study programs which are conducted in support of the turbine design. The studies at the author’s company are described with presentation of blade and disk material data. Field experience as related to materials evaluations are described, with particular emphasis on returning parts to service. Materials now available when fully evaluated, through the program described, will permit metal temperatures 100 degrees F higher than currently used.


Author(s):  
Christian Vandervort ◽  
David Leach ◽  
David Walker ◽  
Jerry Sasser

Abstract The power generation industry is facing unprecedented challenges. High fuel costs and increased penetration of renewable power have resulted in greater demand for high efficiency and operational flexibility. Imperatives to reduce carbon footprint place an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants meet these requirements by providing reliable, dispatchable generation with a low cost of electricity, reduced environmental impact, and broad operational flexibility. Start times for large, industrial gas turbine combined cycles are less than 30 minutes from turning gear to full load, with ramp rates from 60 to 88 MW/minute. GE introduced the 7/9HA industrial gas turbine product portfolio in 2014 in response to these demands. These air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, is designed to exceed 64% combined cycle efficiency (net, ISO) in a 1×1, single-shaft (SS) configuration. As of December 2018, a total of 32 7/9HA power plants have achieved COD (Commercial Operation Date) while accumulating over 220,000 hours of operation. These plants operate across a variety of demand profiles including base load and load following (intermediate) service. Fleet leaders for both the 7HA and 9HA have exceeded 12,000 hours of operation, with multiple units over 8,000 hours. This paper will address four topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation, 3) integrated power plant commissioning and operating experience, and 4) lessons learned and fleet reliability.


1998 ◽  
Vol 120 (2) ◽  
pp. 350-357 ◽  
Author(s):  
P. J. Dechamps

The last decade has seen remarkable improvements in industrial gas turbine size and performances. There is no doubt that the coming years are holding the promise of even more progress in these fields. As a consequence, the fuel utilization achieved by combined cycle power plants has been steadily increased. This is, however, also because of the developments in the heat recovery technology. Advances on the gas turbine side justify the development of new combined cycle schemes, with more advanced heat recovery capabilities. Hence, the system performance is spiraling upward. In this paper, we look at some of the heat recovery possibilities with the newly available gas turbine engines, characterized by a high exhaust temperature, a high specific work, and the integration of some gas turbine cooling with the boiler. The schemes range from classical dual pressure systems, to triple pressure systems with reheat in supercritical steam conditions. For each system, an optimum set of variables (steam pressures, etc.) is proposed. The effect of some changes on the steam cycle parameters, like increasing the steam temperatures above 570°C are also considered. Emphasis is also put on the influence of some special features or arrangements of the heat recovery steam generators, not only from a thermodynamic point of view.


1995 ◽  
Vol 117 (2) ◽  
pp. 245-250 ◽  
Author(s):  
K. Nakakado ◽  
T. Machida ◽  
H. Miyata ◽  
T. Hisamatsu ◽  
N. Mori ◽  
...  

Employing ceramic materials for the critical components of industrial gas turbines is anticipated to improve the thermal efficiency of power plants. We developed a first-stage stator vane for a 1300°C class, 20-MW industrial gas turbine. This stator vane has a hybrid ceramic/metal structure, to increase the strength reliability of brittle ceramic parts, and to reduce the amount of cooling air needed for metal parts as well. The strength design results of a ceramic main part are described. Strength reliability evaluation results are also provided based on a cascade test using combustion gas under actual gas turbine running conditions.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


2020 ◽  
Vol 51 (9) ◽  
pp. 4902-4921 ◽  
Author(s):  
Sabin Sulzer ◽  
Magnus Hasselqvist ◽  
Hideyuki Murakami ◽  
Paul Bagot ◽  
Michael Moody ◽  
...  

Abstract Industrial gas turbines (IGT) require novel single-crystal superalloys with demonstrably superior corrosion resistance to those used for aerospace applications and thus higher Cr contents. Multi-scale modeling approaches are aiding in the design of new alloy grades; however, the CALPHAD databases on which these rely remain unproven in this composition regime. A set of trial nickel-based superalloys for IGT blades is investigated, with carefully designed chemistries which isolate the influence of individual additions. Results from an extensive experimental characterization campaign are compared with CALPHAD predictions. Insights gained from this study are used to derive guidelines for optimized gas turbine alloy design and to gauge the reliability of the CALPHAD databases.


Author(s):  
Markus Feigl ◽  
Geoff Myers ◽  
Stephen R. Thomas ◽  
Raub Smith

This paper describes the concept and benefits of the fuel moisturization system for the GE H System™ steam-cooled industrial gas turbine. The DLN2.5H combustion system and fuel moisturization system are both described, along with the influence of fuel moisture on combustor performance as measured during full-scale, full-pressure rig testing of the DLN2.5H combustion system. The lean, premixed DLN2.5H combustion system was targeted to deliver single-digit NOx and CO emissions from 40% to 100% combined cycle load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. These machines are also designed to yield a potential combined-cycle efficiency of 60 percent or higher. Fuel moisturization contributes to the attainment of both the NOx and the combined-cycle efficiency performance goals, as discussed in this paper.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Sign in / Sign up

Export Citation Format

Share Document