scholarly journals Experimental and Numerical Study of Heat Transfer Performance for an Engine Representative Two-Pass Rotating Internal Cooling Channel

Author(s):  
Zhi Wang ◽  
Roque Corral ◽  
Francois Chedevergne

This paper investigates, both experimentally and computationally, the heat transfer performance on an engine representative varying aspect ratio two-pass internal cooling channel, in both stationary and rotating conditions. The test geometry and design parameters were suggested by SNECMA as a representative HPT blade two-pass internal cooling channel. The cooling channel has radially outward flow in the first passage with an aspect ratio of 1:2.25 and after a 180 degree sharp turn, a radially inward flow in the second passage with an aspect ratio of 1:1.85. One side of the two passages is equipped with 45 degree angled rib turbulators with a rib spacing P/e=7 and blockage ratio e/Dh =0.116. The other side is smooth in order to have optical access for experiment. The experiment was performed at three Reynolds numbers: 15,000, 25,000, and 35,000. Both forward and backward rotating directions were tested in order to study the heat transfer performance of the ribbed surface as trailing wall or leading wall individually. The tested Rotation numbers were Ro=±0.3 at Re=15,000 and Re=25,000, whereas the Rotation number was reduced to ±0.22 at Re=35,000, due to restrictions of the test facility. Infrared thermography technology is used to capture the temperature field for further evaluation of heat transfer performance. Numerical simulations for all experimental cases were conducted using the same geometry including the air feeding system, applying the experimental wall temperature distribution in order to properly capture inlet and buoyancy effects, with the k–ω–SST turbulence model. Numerical results show overall agreement and similar trends than the experimental data. Numerical results also show that the rotation effects alter the internal flow significantly, resulting in different surface heat transfer distributions. Particularly, it is shown that heat transfer performance of the pressure side is not enhanced by the rotation in this study, which is a surprising result. This behavior was captured both in the experiments and the numerical predictions.

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Filippo Coletti ◽  
Tom Verstraete ◽  
Jérémy Bulle ◽  
Timothée Van der Wielen ◽  
Nicolas Van den Berge ◽  
...  

This two-part paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter, as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In the first part of the paper, the design methodology of the cooling channel was presented. In this second part, the optimized design is validated. The results obtained with the numerical methodology described in Part I are checked against pressure measurements and particle image velocimetry (PIV) measurements. The experimental campaign is carried out on a magnified model of a two-legged cooling channel that reproduces the geometrical and aerodynamical features of its numerical counterpart. Both the original profile and the optimized profile are tested. The latter proves to outperform the original geometry by about 36%, in good agreement with the numerical predictions. Two-dimensional PIV measurements performed in planes parallel to the plane of the bend highlight merits and limits of the computational model. Despite the well-known limits of the employed eddy viscosity model, the overall trends are captured. To assess the impact of the aerodynamic optimization on the heat transfer performance, detailed heat transfer measurements are carried out by means of liquid crystals thermography. The optimized geometry presents overall Nusselt number levels only 6% lower with respect to the standard U-bend. The study demonstrates that the proposed optimization method based on an evolutionary algorithm, a Navier–Stokes solver, and a metamodel of it is a valid design tool to minimize the pressure loss across a U-bend in internal cooling channels without leading to a substantial loss in heat transfer performance.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Igor V. Shevchuk ◽  
Sean C. Jenkins ◽  
Bernhard Weigand ◽  
Jens von Wolfersdorf ◽  
Sven Olaf Neumann ◽  
...  

Numerical results for an internal ribbed cooling channel including a 180 deg bend with a 2:1 inlet and a 1:1 aspect ratio outlet channel were validated against experimental results in terms of spatially resolved heat transfer distributions, pressure losses, and velocity distributions. The numerical domain consisted of one rib segment in the inlet channel and three ribs segments in the outlet channel to reduce the overall numerical effort and allow for an extensive parametric study. The results showed good agreement for both heat transfer magnitudes and spatial distributions, and the numerical results captured the predominate flow physics resulting from the 180 deg bend. The production of Dean vortices and acceleration of the flow in the bend produced strongly increased heat transfer on both the ribbed and unribbed walls in the outlet channel in addition to increases due to the ribs. Numerical simulations were performed for a wide range of divider wall-to-tip wall distances, which influenced the position of the highest heat transfer levels on the outlet walls and changed the shape of the heat transfer distribution on the tip wall. Analysis of section averages of heat transfer in the bend and outlet channel showed a strong influence of the tip wall distance, while no effect was seen upstream of the bend. A similarly large effect on pressure losses in the bend was observed with varying tip wall position. Trends in averaged heat transfer varied linearly with tip wall distance, while pressure losses followed a nonlinear trend, resulting in an optimum tip wall distance with respect to heat transfer efficiency.


2021 ◽  
pp. 107754632110011
Author(s):  
Mohammad Javad Khodaei ◽  
Amin Mehrvarz ◽  
Reza Ghaffarivardavagh ◽  
Nader Jalili

In this article, we have first presented a metasurface design methodology by coupling the acoustic cavity to the coiled channel. The geometrical design parameters in this structure are subsequently studied both analytically and numerically to identify a road map for silencer design. Next, upon tuning the design parameters, we have introduced an air-permeable noise barrier capable of sound silencing in the ultrawide band of the frequency. It is has been shown that the presented metasurface can achieve +10 dB sound transmission loss from 170 Hz to 1330 Hz (≈3 octaves). Furthermore, we have numerically studied the ventilation and heat transfer performance of the designed metasurface. Enabling noise mitigation by leveraging the proposed metasurface opens up new possibilities ranging from residential and office noise reduction to enabling ultralow noise fan, propellers, and machinery.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3954
Author(s):  
Liang Xu ◽  
Qicheng Ruan ◽  
Qingyun Shen ◽  
Lei Xi ◽  
Jianmin Gao ◽  
...  

Traditional cooling structures in gas turbines greatly improve the high temperature resistance of turbine blades; however, few cooling structures concern both heat transfer and mechanical performances. A lattice structure (LS) can solve this issue because of its advantages of being lightweight and having high porosity and strength. Although the topology of LS is complex, it can be manufactured with metal 3D printing technology in the future. In this study, an integral optimization model concerning both heat transfer and mechanical performances was presented to design the LS cooling channel with a variable aspect ratio in gas turbine blades. Firstly, some internal cooling channels with the thin walls were built up and a simple raw of five LS cores was taken as an insert or a turbulator in these cooling channels. Secondly, relations between geometric variables (height (H), diameter (D) and inclination angle(ω)) and objectives/functions of this research, including the first-order natural frequency (freq1), equivalent elastic modulus (E), relative density (ρ¯) and Nusselt number (Nu), were established for a pyramid-type lattice structure (PLS) and Kagome-type lattice structure (KLS). Finally, the ISIGHT platform was introduced to construct the frame of the integral optimization model. Two selected optimization problems (Op-I and Op-II) were solved based on the third-order response model with an accuracy of more than 0.97, and optimization results were analyzed. The results showed that the change of Nu and freq1 had the highest overall sensitivity Op-I and Op-II, respectively, and the change of D and H had the highest single sensitivity for Nu and freq1, respectively. Compared to the initial LS, the LS of Op-I increased Nu and E by 24.1% and 29.8%, respectively, and decreased ρ¯ by 71%; the LS of Op-II increased Nu and E by 30.8% and 45.2%, respectively, and slightly increased ρ¯; the LS of both Op-I and Op-II decreased freq1 by 27.9% and 19.3%, respectively. These results suggested that the heat transfer, load bearing and lightweight performances of the LS were greatly improved by the optimization model (except for the lightweight performance for the optimal LS of Op-II, which became slightly worse), while it failed to improve vibration performance of the optimal LS.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 191 ◽  
Author(s):  
Jundika Kurnia ◽  
Desmond Lim ◽  
Lianjun Chen ◽  
Lishuai Jiang ◽  
Agus Sasmito

Owing to its relatively high heat transfer performance and simple configurations, liquid cooling remains the preferred choice for electronic cooling and other applications. In this cooling approach, channel design plays an important role in dictating the cooling performance of the heat sink. Most cooling channel studies evaluate the performance in view of the first thermodynamics aspect. This study is conducted to investigate flow behaviour and heat transfer performance of an incompressible fluid in a cooling channel with oblique fins with regards to first law and second law of thermodynamics. The effect of oblique fin angle and inlet Reynolds number are investigated. In addition, the performance of the cooling channels for different heat fluxes is evaluated. The results indicate that the oblique fin channel with 20° angle yields the highest figure of merit, especially at higher Re (250–1000). The entropy generation is found to be lowest for an oblique fin channel with 90° angle, which is about twice than that of a conventional parallel channel. Increasing Re decreases the entropy generation, while increasing heat flux increases the entropy generation.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4660 ◽  
Author(s):  
Marcin Sosnowski

The possibility of implementing the innovative multi-disc sorption bed combined with the heat exchanger into the adsorption cooling technology is investigated experimentally and numerically in the paper. The developed in-house sorption model incorporated into the commercial computational fluid dynamics (CFD) code was applied within the analysis. The research allowed to define the design parameters of the proposed type of the sorption bed and correlate them with basic factors influencing the performance of the sorption bed and its dimensions. The designed multi-disc sorption bed is characterized by great scalability and allows to significantly expand the potential installation sites of the adsorption chillers.


Sign in / Sign up

Export Citation Format

Share Document