Acoustic meta-silencer: Toward enabling ultrawide-band air-permeable noise barrier

2021 ◽  
pp. 107754632110011
Author(s):  
Mohammad Javad Khodaei ◽  
Amin Mehrvarz ◽  
Reza Ghaffarivardavagh ◽  
Nader Jalili

In this article, we have first presented a metasurface design methodology by coupling the acoustic cavity to the coiled channel. The geometrical design parameters in this structure are subsequently studied both analytically and numerically to identify a road map for silencer design. Next, upon tuning the design parameters, we have introduced an air-permeable noise barrier capable of sound silencing in the ultrawide band of the frequency. It is has been shown that the presented metasurface can achieve +10 dB sound transmission loss from 170 Hz to 1330 Hz (≈3 octaves). Furthermore, we have numerically studied the ventilation and heat transfer performance of the designed metasurface. Enabling noise mitigation by leveraging the proposed metasurface opens up new possibilities ranging from residential and office noise reduction to enabling ultralow noise fan, propellers, and machinery.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4660 ◽  
Author(s):  
Marcin Sosnowski

The possibility of implementing the innovative multi-disc sorption bed combined with the heat exchanger into the adsorption cooling technology is investigated experimentally and numerically in the paper. The developed in-house sorption model incorporated into the commercial computational fluid dynamics (CFD) code was applied within the analysis. The research allowed to define the design parameters of the proposed type of the sorption bed and correlate them with basic factors influencing the performance of the sorption bed and its dimensions. The designed multi-disc sorption bed is characterized by great scalability and allows to significantly expand the potential installation sites of the adsorption chillers.


Author(s):  
Zhi Wang ◽  
Roque Corral ◽  
Francois Chedevergne

This paper investigates, both experimentally and computationally, the heat transfer performance on an engine representative varying aspect ratio two-pass internal cooling channel, in both stationary and rotating conditions. The test geometry and design parameters were suggested by SNECMA as a representative HPT blade two-pass internal cooling channel. The cooling channel has radially outward flow in the first passage with an aspect ratio of 1:2.25 and after a 180 degree sharp turn, a radially inward flow in the second passage with an aspect ratio of 1:1.85. One side of the two passages is equipped with 45 degree angled rib turbulators with a rib spacing P/e=7 and blockage ratio e/Dh =0.116. The other side is smooth in order to have optical access for experiment. The experiment was performed at three Reynolds numbers: 15,000, 25,000, and 35,000. Both forward and backward rotating directions were tested in order to study the heat transfer performance of the ribbed surface as trailing wall or leading wall individually. The tested Rotation numbers were Ro=±0.3 at Re=15,000 and Re=25,000, whereas the Rotation number was reduced to ±0.22 at Re=35,000, due to restrictions of the test facility. Infrared thermography technology is used to capture the temperature field for further evaluation of heat transfer performance. Numerical simulations for all experimental cases were conducted using the same geometry including the air feeding system, applying the experimental wall temperature distribution in order to properly capture inlet and buoyancy effects, with the k–ω–SST turbulence model. Numerical results show overall agreement and similar trends than the experimental data. Numerical results also show that the rotation effects alter the internal flow significantly, resulting in different surface heat transfer distributions. Particularly, it is shown that heat transfer performance of the pressure side is not enhanced by the rotation in this study, which is a surprising result. This behavior was captured both in the experiments and the numerical predictions.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 43
Author(s):  
M F Mohd Zulkeple ◽  
A R Abu Talib ◽  
E Gires ◽  
M T Hameed Sultan ◽  
M S Ramli

This research presents the possibility of the jet impingement cooling technique configuration for stator of turbine blade under the transient heat transfer condition. The main goal of this study is to investigate the impingement cooling plate holes configuration and Reynolds number (Re) effect on the heat transfer which can be observed from the color play of the thermochromic liquid crystal (TLC). The findings proved that with the present of the small holes in between the main larger holes capable to enhance the heat transfer across the target surface. However, some criteria of the design need to be taken into count as it may produce different heat transfer performance of the impingement cooling technique. Therefore, in the range of predetermined design parameters, only several combinations that prevailed to achieve maximum heat transfer across the target plate. 


Sign in / Sign up

Export Citation Format

Share Document