Implicit LES for Shaped-Hole Film Cooling Flow

Author(s):  
Todd A. Oliver ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Robert D. Moser ◽  
Gregory Laskowski

Results of a recent joint experimental and computational investigation of the flow through a plenum-fed 7-7-7 shaped film cooling hole are presented. In particular, we compare the measured adiabatic effectiveness and mean temperature against implicit large eddy simulation (iLES) for blowing ratio approximately 2, density ratio 1.6, and Reynolds number 6000. The results overall show reasonable agreement between the iLES and the experimental results for the adiabatic effectiveness and gross features of the mean temperature field. Notable discrepancies include the centerline adiabatic effectiveness near the hole, where the iLES under-predicts the measurements by Δη ≈ 0.05, and the near-wall temperature, where the simulation results show features not present in the measurements. After showing this comparison, the iLES results are used to examine features that were not measured in the experiments, including the in-hole flow and the dominant fluxes in the mean internal energy equation downstream of the hole. Key findings include that the flow near the entrance to the hole is highly turbulent and that there is a large region of backflow near the exit of the hole. Further, the well-known counter-rotating vortex pair downstream of the hole is observed. Finally, the typical gradient diffusion hypothesis for the Reynolds heat flux is evaluated and found to be incorrect.

Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. High-resolution distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface.


Author(s):  
Lingyu Zeng ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Most experiments of blade film cooling are conducted with density ratio lower than that of turbine conditions. In order to accurately model the performance of film cooling under a high density ratio, choosing an appropriate coolant to mainstream scaling parameter is necessary. The effect of density ratio on film cooling effectiveness on the surface of a gas turbine twisted blade is investigated from a numerical point of view. One row of film holes are arranged in the pressure side and two rows in the suction side. All the film holes are cylindrical holes with a pitch to diameter ratio P/d = 8.4. The inclined angle is 30°on the pressure side and 34° on the suction side. The steady solutions are obtained by solving Reynolds-Averaged-Navier-Stokes equations with a finite volume method. The SST turbulence model coupled with γ-θ transition model is applied for the present simulations. A film cooling experiment of a turbine vane was done to validate the turbulence model. Four different density ratios (DR) from 0.97 to 2.5 are studied. To independently vary the blowing ratio (M), momentum flux ratio (I) and velocity ratio (VR) of the coolant to the mainstream, seven conditions (M varying from 0.25 to 1.6 on the pressure side and from 0.25 to 1.4 on the suction side) are simulated for each density ratio. The results indicate that the adiabatic effectiveness increases with the increase of density ratio for a certain blowing ratio or a certain momentum flux ratio. Both on the pressure side and suction side, none of the three parameters listed above can serve as a scaling parameter independent of density ratio in the full range. The velocity ratio provides a relative better collapse of the adiabatic effectiveness than M and I for larger VRs. A new parameter describing the performance of film cooling is introduced. The new parameter is found to be scaled with VR for nearly the whole range.


Author(s):  
Phillip M. Ligrani ◽  
Anthony E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 degrees with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to freestream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d<25–70 (depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Differences are principally due to different coalescence of injectant accumulations from the two different rows of holes, as well as significantly different lift-off dependence on momentum flux ratio. Spanwise-averaged iso-energetic Stanton number ratios are somewhat higher than ones measured downstream of other simple and compound angle configurations studied. Values range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


Author(s):  
Kevin Tracy ◽  
Stephen P. Lynch

Abstract Shaped film cooling holes are used extensively for film cooling in gas turbines due to their superior performance in keeping coolant attached to the surface, relative to cylindrical holes. However, fewer studies have examined the impact of the orientation of the shaped hole axis relative to the main flow direction, known as a compound angle. A compound angle can occur intentionally due to manufacturing, or unintentionally due to changes in the main flow direction at off-design conditions. In either case, the compound angle causes the film cooling jet to roll up into a strong streamwise vortex that changes the lateral distribution of coolant, relative to the pair of vortices that develop from an axially oriented film cooling hole. In this study, Large Eddy Simulation (LES) using the Wall-Adapting Local Eddy Viscosity (WALE) model was performed on the publicly available 7-7-7 shaped film cooling hole, at two orientations (0°, 30°) and two blowing ratios (M = 1, 3). Laterally-averaged film effectiveness was largely unchanged by a compound angle at a blowing ratio of 1, but improved at a blowing ratio of 3. For both blowing ratios, the lateral distribution of film was more uniform with the addition of a 30° compound angle. Both wall normal and lateral turbulent convective heat transfer was increased by the addition of a compound angle at both blowing ratios.


Author(s):  
Sai Shrinivas Sreedharan ◽  
Danesh K. Tafti

Computational studies are carried out using Large Eddy Simulations (LES) to investigate the effect of coolant to mainstream blowing ratio in a leading edge region of a film cooled vane. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R. = 0.5. However, further downstream the larger mass of coolant injected at higher blowing ratios, in spite of the larger jet penetration and dilution, increases the effectiveness with blowing ratio.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Mohammad A. Hossain ◽  
Robin Prenter ◽  
Ryan K. Lundgreen ◽  
Ali Ameri ◽  
James W. Gregory ◽  
...  

A companion experimental and numerical study was conducted for the performance of a row of five sweeping jet (SJ) film cooling holes consisting of conventional curved fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of P/D = 8.5. Adiabatic film effectiveness (η), thermal field (θ), convective heat transfer coefficient (h), and discharge coefficient (CD) were measured at two different freestream turbulence levels (Tu = 0.4% and 10.1%) and four blowing ratios (M = 0.98, 1.97, 2.94, and 3.96) at a density ratio of 1.04 and hole Reynolds number of ReD = 2800. Adiabatic film effectiveness and thermal field data were also acquired for a baseline 777-shaped hole. The SJ film cooling hole showed significant improvement in cooling effectiveness in the lateral direction due to the sweeping action of the fluidic oscillator. An unsteady Reynolds-averaged Navier–Stokes (URANS) simulation was performed to evaluate the flow field at the exit of the hole. Time-resolved flow fields revealed two alternating streamwise vortices at all blowing ratios. The sense of rotation of these alternating vortices is opposite to the traditional counter-rotating vortex pair (CRVP) found in a “jet in crossflow” and serves to spread the film coolant laterally.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Baitao An ◽  
Jianjun Liu ◽  
Chao Zhang ◽  
Sijing Zhou

This paper presents a method to improve the film-cooling effectiveness of cylindrical holes. A short crescent-shaped block is placed at the downstream of a cylindrical cooling hole. The block shape is defined by a number of geometric parameters including block height, length and width, etc. The single row hole on a flat plate with inclination angle of 30 deg, pitch ratio of 3, and length-diameter ratio of 6.25 was chosen as the baseline test case. Film-cooling effectiveness for the cylindrical hole with or without the downstream short crescent-shaped block was measured by using the pressure sensitive paint (PSP) technique. The density ratio of coolant (argon) to mainstream air is 1.38. The blowing ratios vary from 0.5 to 1.25. The results showed that the lateral averaged cooling effectiveness is increased remarkably when the downstream block is present. The downstream short block allows the main body of the coolant jet to pass over the block top and to form a new down-wash vortex pair, which increases the coolant spread in the lateral direction. The effects of each geometrical parameter of the block on the film-cooling effectiveness were studied in detail.


Author(s):  
Robert P. Schroeder ◽  
Karen A. Thole

Shaped film cooling holes have become a standard geometry for protecting gas turbine components. Few studies, however, have reported flowfield measurements for moderately-expanded shaped holes and even fewer have reported on the effects of high freestream turbulence intensity relevant to gas turbine airfoils. This study presents detailed flowfield and adiabatic effectiveness measurements for a shaped hole at freestream turbulence intensities of 0.5% and 13%. Test conditions included blowing ratios of 1.5 and 3 at a density ratio of 1.5. Measured flowfields revealed a counter-rotating vortex pair and high jet penetration into the mainstream at the blowing ratio of 3. Elevated freestream turbulence had a minimal effect on mean velocities and rather acted by increasing turbulence intensity around the coolant jet, resulting in increased lateral spreading of coolant.


Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard

Abstract Understanding the flow from a cooling hole is very important to be able to properly control film cooling of turbine blades. For this purpose, large eddy simulation (LES) investigation of the flow inside a cylindrical film cooling hole is presented in this paper. Two different geometries, with different hole metering lengths, are investigated at a blowing ratio of 0.5. The main flow structure in the hole are the hairpin vortices that originate from a shear layer formed due to flow separation near the hole entry. The comparison of these hairpin vortices in the two cases with different hole metering length is presented in detail. The results show that in case of the hole with longer length the hairpin vortices dissociate within the hole itself. In such a case a uniform flow is seen at the hole exit. However, when the hole length is significantly decreased, it is shown that these vortices exit the hole and effect the vortex structures outside the hole, thereby accounting for the reduction in film cooling effectiveness. Overall, these results bring forth one other major reason for the reduction in film cooling effectiveness with reduction in hole length, i.e. the exit of in-hole hairpin vortices into the crossflow.


Sign in / Sign up

Export Citation Format

Share Document