A Detailed Study of the Interaction Between Two Rows of Cooling Holes

Author(s):  
Y. Jiang ◽  
L. Capone ◽  
P. Ireland ◽  
E. Romero

An optimal design of film cooling is a key factor in the effort of producing high efficiency gas turbine. Understanding of the fluid dynamics interaction between cooling holes can help engineers to improve overall thermal effectiveness. Modelling and correct prediction is a very complex problem, since the multiple phenomena involved, such as: mixing, turbulence and heat transfer. The present work performs an investigation of different cooling configurations ranging from single hole up to two rows. The main objective is to evaluate the double-rows interaction and the effect on film cooling. Strong nonlinear effects are underlined by different simulations, while varying blowing ratio and geometrical configuration of cooling holes. Meanwhile an initial analysis is performed using flat plate geometry, verification and validation is then extended to realistic stage of high pressure turbine. Multiple cooling holes configurations are embedded on the pressure and suction sides of the single stage. The main outcome is the verification of the thermal effectiveness improvement obtained by cooling jets interaction of multiple rows design. The effects of curvature surface and frame of reference rotation are also evaluated, underlying the differences with standard flat plate test cases.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Y. Jiang ◽  
L. Capone ◽  
P. Ireland ◽  
E. Romero

An optimal design of film cooling is a key factor in the effort of producing high-efficiency gas turbine. Understanding of the fluid dynamics interaction between cooling holes can help engineers to improve overall thermal effectiveness. Correct prediction through modeling is a very complex problem since multiple phenomena are involved such as mixing, turbulence, and heat transfer. The present work performs an investigation of different cooling configurations ranging from single hole up to two rows. The main objective is to evaluate the double-rows interaction and the effect on film cooling. Strong nonlinear effects are underlined by different simulations, while varying blowing ratio (BR) and geometrical configuration of cooling holes. Meanwhile an initial analysis is performed using flat plate geometry, verification and validation is then extended to realistic stage of high pressure (HP) turbine. Multiple cooling holes configurations are embedded on the pressure side (PS) and suction side (SS) of the single stage. The main outcome is the verification of the thermal effectiveness improvement obtained by cooling jets interaction of multiple rows design. The effects of curvature surface and frame of reference rotation are also evaluated, underlying the differences with standard flat plate test cases.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Peng Yang ◽  
Guangchao Li ◽  
Jianyong Zhu

Abstract The film effectiveness was investigated on a grooved surface with the injection orientation angles of 30°, 90°, and 150° at the blowing ratios of 0.5, 0.8, 1.1, and 1.4. The injection orientation angle and the groove on the surface caused the effect of the various and irregular shaped hole injection due to the different orientation injection. The results showed that the new phenomenon of film effectiveness distributions was found on the grooved surface compared with the flat plate case. Film effectiveness distributions for the β = 30° were found to be the discontinuous strips. The surface averaged film effectiveness with the orientation angle of 30° was found to decrease with the increase of the blowing ratio. Additionally, the reverse trend was observed with the orientation angle of 150°. The film effectiveness with the orientation angle of 90° only slightly changed with the increase of the blowing ratio.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Peng Yang ◽  
Guangchao Li ◽  
Jianyong Zhu

AbstractThe film effectiveness was investigated on a grooved surface with the injection orientation angles of 30°, 90°, and 150° at the blowing ratios of 0.5, 0.8, 1.1, and 1.4. The injection orientation angle and the groove on the surface caused the effect of the various and irregular shaped hole injection due to the different orientation injection. The results showed that the new phenomenon of film effectiveness distributions was found on the grooved surface compared with the flat plate case. Film effectiveness distributions for the β = 30° were found to be the discontinuous strips. The surface averaged film effectiveness with the orientation angle of 30° was found to decrease with the increase of the blowing ratio. Additionally, the reverse trend was observed with the orientation angle of 150°. The film effectiveness with the orientation angle of 90° only slightly changed with the increase of the blowing ratio.


Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. High-resolution distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface.


Author(s):  
Tommaso Bacci ◽  
Alessio Picchi ◽  
Bruno Facchini

Shaped holes are considered as an effective solution to enhance gas turbine film-cooling performance, as they allow to increase the coolant mass-flux, while limiting the detrimental lift-off phenomena. A great amount of work has been carried out in past years on basic flat plate configurations while a reduced number of experimental works deals with a quantitative assessment of the influence of curvature and vane pressure gradient. In the present work PSP (Pressure Sensitive Paint) technique is used to detail the adiabatic effectiveness generated by axial shaped holes with high value of Area Ratio close to 7, in three different configurations with the same 1:1 scale: first of all, a flat plate configuration is examined; after that, the film-cooled pressure and suction sides of a turbine vane model are investigated. Tests were performed varying the blowing ratio and imposing a density ratio of 2.5 . The experimental results are finally compared to the predictions of two different correlations, developed for flat plate configurations.


2018 ◽  
Vol 16 ◽  
pp. 30-44 ◽  
Author(s):  
Farouk Kebir ◽  
Azzeddine Khorsi

Film cooling is vital for gas turbine blades to protect them from thermal stresses and high temperatures due to the hot gas flow in the blade surface. Film cooling is applied to almost all external surfaces associated with aerodynamic profiles that are exposed to hot combustion gases such as main bodies, end-walls, blade tips and leading edges. In a review of the literature, it was found that there are strong effects of free-stream turbulence, surface curvature and hole shape on film cooling performance also blowing ratio. The performance of the film cooling is difficult to predict due to the inherent complex flow fields along the surfaces of the airfoil components in the turbine engines. From all what we introducing the film cooling is reviewed through a discussion of the analyses methodologies, a physical description, and the various influences on film-cooling performance. Initially Computational analysis was done on a flat plate with hole inclined at 55° to the surface plate. This study focuses on the efficient computation of film cooling flows with three blowing ratio. The numerical results show the effectiveness cooling and heat transfer behavior with increasing injection blowing ratio M (0.5, 1, and 1.5). The influence of increased blade film cooling can be assessed via the values of Nusselt number in terms of reduced heat transfer to the blade. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5, 1.0 and 1.5. The present results are obtained at a free stream turbulence of 10%, which are the typical conditions upstream of the effectiveness is generally lower for a large stream-wise angle of 55°.


Author(s):  
Kyle R. Vinton ◽  
Travis B. Watson ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

The combined effects of a favorable, mainstream pressure gradient and coolant-to-mainstream density ratio have been investigated. Detailed film cooling effectiveness distributions have been obtained on a flat plate with either cylindrical (θ = 30°) or laidback, fan-shaped holes (θ = 30°, β = γ = 10°) using the pressure sensitive paint (PSP) technique. In a low speed wind tunnel, both non-accelerating and accelerating flows were considered while the density ratio varied from 1–4. In addition, the effect of blowing ratio was considered, with this ratio varying from 0.5 to 1.5. The film produced by the shaped hole outperformed the round hole under the presence of a favorable pressure gradient for all blowing and density ratios. At the lowest blowing ratio, in the absence of freestream acceleration, the round holes outperformed the shaped holes. However, as the blowing ratio increases, the shaped holes prevent lift-off of the coolant and offer enhanced protection. The effectiveness afforded by both the cylindrical and shaped holes, with and without freestream acceleration, increased with density ratio.


Author(s):  
Ping-Hei Chen ◽  
Di Ai ◽  
Szu-Hsien Lee

This paper presents the measured heat transfer and film cooling results over a flat plate as the secondary flow is ejected into the mainstream through a row of conical holes. A transient liquid crystal thermography was employed to derive the film cooling performance and heat transfer distribution over the test flat plate. Each conical injection hole, with a pitch-to-diameter ratio of 3 on the exit plane, had an expanded angle of 8 degrees. The effects of changing the spanwise injection angles and blowing ratios on both film cooling and heat transfer distributions were investigated. Test pieces in this study used different spanwise injection angles of β = 0°, 45°, and 90° but maintained the same inclination angle of γ = 35°. For each test piece, four different blowing ratios of 0.5, 1.0, 1.25 and 1.5 were tested at Re = 44,000, Tu = 2.3%, δ1/d = 0.22, p/d = 3, and R = 1.06. A baseline check was also conducted for the flat-plate film cooling through the use of straight circular holes. In addition, a comparison was made between the film cooling results using conical holes with those using straight circular holes. Measured results showed that the laterally averaged heat transfer coefficient increases with the blowing ratio for both straight circular and conical hole configurations. For the simple injection, a conical configuration was found to have better film cooling protection only at higher blowing ratio (M = 1.25 and 1.5). Compound angle injection does not have specific advantage for the film cooling protection in the case of conical configuration.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


Author(s):  
Bo Shi ◽  
Jia Li ◽  
Mingfei Li ◽  
Jing Ren ◽  
Hongde Jiang

This paper presents experimental results of temperature distribution on a flat plate with both film cooling and impingement cooling configurations. The film plate consists of 4 rows of round holes injected at an angle of 30°. The impingement plate has a 6×6 jet array. Mainstream temperature is 100°C, and coolant temperature is around 30°C, which results in a density ratio of 1.2. To acquire a similar heat transfer condition with real engine, Bi number is matched by choosing MACOR as the plate material, which has a proper thermal conductivity of 1.7 W/m·K. A series of experiments were conducted, with blowing ratio ranges from 0.7 to 2.2. Infrared camera was used to measure the outer surface temperature. Overall cooling effectiveness was found to reach its maximum when blowing ratio is around 1.0. When the coolant continue to increase, the overall cooling effectiveness decreases and the cooling uniformity is also decreasing.


Sign in / Sign up

Export Citation Format

Share Document