On the Combination of Large Eddy Simulation and Phenomenological Soot Modelling to Calculate the Smoke Index From Aero-Engines Over a Large Range of Operating Conditions

Author(s):  
Jean Lamouroux ◽  
Stéphane Richard ◽  
Quentin Malé ◽  
Gabriel Staffelbach ◽  
Antoine Dauptain ◽  
...  

Nowadays, models predicting soot emissions are, neither able to describe correctly fine effects of technological changes on sooting trends nor sufficiently validated at relevant operating conditions to match design office quantification needs. Yet, phenomenological descriptions of soot formation, containing key ingredients for soot modeling exist in the literature, such as the well-known Leung et al. model (Combust Flame 1991). This approach indeed includes contributions of nucleation, surface growth, coagulation, oxidation and thermophoretic transport of soot. When blindly applied to aeronautical combustors for different operating conditions, this model fails to hierarchize operating points compared to experimental measurements. The objective of this work is to propose an extension of the Leung model, including an identification of its constants over a wide range of condition relevant of gas turbines operation. Today, the identification process can hardly be based on laboratory flames since few detailed experimental data are available for heavy-fuels at high pressure. Thus, it is decided to directly target smoke number values measured at the engine exhaust for a variety of combustors and operating conditions from idling to take-off. A Large Eddy Simulation approach is retained for its intrinsic ability to reproduce finely unsteady behavior, mixing and intermittency. In this framework, The Leung model for soot is coupled to the TFLES model for combustion. It is shown that pressure-sensitive laws for the modelling constant of the soot surface chemistry are sufficient to reproduce engine emissions. Grid convergence is carried out to verify the robustness of the proposed approach. Several cases are then computed blindly to assess the prediction capabilities of the extended model. This study paves the way for the systematic use of a high fidelity tool solution in design office constraints for combustion chamber development.

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
J. Lamouroux ◽  
S. Richard ◽  
Q. Male ◽  
G. Staffelbach ◽  
A. Dauptain ◽  
...  

Nowadays, models predicting soot emissions are neither able to describe correctly fine effects of technological changes on sooting trends nor sufficiently validated at relevant operating conditions to match design office quantification needs. Yet, phenomenological descriptions of soot formation, containing key ingredients for soot modeling exist in the literature, such as the well-known Leung et al. model (Combust Flame 1991). However, when blindly applied to aeronautical combustors for different operating conditions, this model fails to hierarchize operating points compared to experimental measurements. The objective of this work is to propose an extension of the Leung model over a wide range of condition relevant of gas turbines operation. Today, the identification process can hardly be based on laboratory flames since few detailed experimental data are available for heavy-fuels at high pressure. Thus, it is decided to directly target smoke number values measured at the engine exhaust for a variety of combustors and operating conditions from idling to take-off. A large eddy simulation approach is retained for its intrinsic ability to reproduce finely unsteady behavior, mixing, and intermittency. In this framework, The Leung model for soot is coupled to the thickened flame model (TFLES) for combustion. It is shown that pressure-sensitive laws for the modeling constant of the soot surface chemistry are sufficient to reproduce engine emissions. Grid convergence is carried out to verify the robustness of the proposed approach. Several cases are then computed blindly to assess the prediction capabilities of the extended model.


Author(s):  
Kevin Menzies

The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier–Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.


Author(s):  
Benjamin Martin ◽  
Martin Thomas ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Erosion of compressor and turbine blades operating in extreme environment fouled with sand particles, ash or soot is a serious problem for gas turbine manufacturers and users. Indeed, operation of a gas turbine engine in such hostile conditions leads to drastic degradation of the aerodynamic performance of the components, mostly through surface roughness modification, tip clearance height increase or blunting of blade leading edges. To evaluate associated risks, the computation of particle trajectories and impacts through multiple turbomachinery stages by Computational Fluid Dynamics (CFD) seems a decent path but remains a challenge. The numerical prediction of complex turbulent flows in compressors and turbines is however necessary in such a context and validations are still required. Recently, Large-Eddy Simulation (LES) has shown promising results for compressor and turbine configurations for a wide range of operating conditions at an acceptable cost. With this in mind, this article presents the assessment of a LES solver able to treat turbomachine configurations to predict solid particle motion. To do so, the governing equations of particle dynamics are introduced using the Lagrangian formalism and are solved to compute locations and conditions of impact, namely particle velocity, angle and radius. The fully unsteady and coupled strategy is applied to blade geometries for studying the main areas and conditions of impacts obtained with LES. For comparison, a one-way coupling computation based on a mean steady flow field where only the Lagrangian particles are advanced in time is performed to evaluate the gain and drawbacks of both methods.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


Author(s):  
S. Puggelli ◽  
D. Bertini ◽  
L. Mazzei ◽  
A. Andreini

During the last years aero-engines are progressively evolving toward design concepts that permit improvements in terms of engine safety, fuel economy and pollutant emissions. With the aim of satisfying the strict NOx reduction targets imposed by ICAO-CAEP, lean burn technology is one of the most promising solutions even if it must face safety concerns and technical issues. Hence a depth insight on lean burn combustion is required and Computational Fluid Dynamics (CFD) can be a useful tool for this purpose. In this work a comparison in Large-Eddy Simulation (LES) framework of two widely employed combustion approaches like the Artificially Thickened Flame (ATF) and the Flamelet Generated Manifold (FGM) is performed using ANSYS® Fluent v16.2. Two literature test cases with increasing complexity in terms of geometry, flow field and operating conditions are considered. Firstly, capabilities of FGM are evaluated on a single swirler burner operating at ambient pressure with a standard pressure atomizer for spray injection. Then a second test case, operated at 4 bar, is simulated. Here kerosene fuel is burned after an injection through a prefilming airblast atomizer within a co-rotating double swirler. Obtained comparisons with experimental results show the different capabilities of ATF and FGM in modelling the partially-premixed behaviour of the flame and provides an overview of the main strengths and limitations of the modelling strategies under investigation.


Author(s):  
Stephan Priebe ◽  
Daniel Wilkin ◽  
Andy Breeze-Stringfellow ◽  
Giridhar Jothiprasad ◽  
Lawrence C. Cheung

Abstract Shock/boundary layer interactions (SBLI) are a fundamental fluid mechanics problem relevant in a wide range of applications including transonic rotors in turbomachinery. This paper uses wall-resolved large eddy simulation (LES) to examine the interaction of normal shocks with laminar and turbulent inflow boundary layers in transonic flow. The calculations were performed using GENESIS, a high-order, unstructured LES solver. The geometry created for this study is a transonic passage with a convergent-divergent nozzle that expands the flow to the desired Mach number upstream of the shock and then introduces constant radius curvature to simulate local airfoil camber. The Mach numbers in the divergent section of the transonic passage simulate single stage commercial fan blades. The results predicted with the LES calculations show significant differences between laminar and turbulent SBLI in terms of shock structure, boundary layer separation and transition, and aerodynamic losses. For laminar flow into the shock, significant flow separation and low-frequency unsteadiness occur, while for turbulent flow into the shock, both the boundary layer loss and the low-frequency unsteadiness are reduced.


2020 ◽  
Author(s):  
Gokhan Kirkil

<p>WRF model provides a potentially powerful framework for coupled simulations of flow covering a wide range of<br>spatial and temporal scales via a successive grid nesting capability. Nesting can be repeated down to turbulence<br>solving large eddy simulation (LES) scales, providing a means for significant improvements of simulation of<br>turbulent atmospheric boundary layers. We will present the recent progress on our WRF-LES simulations of<br>the Perdigao Experiment performed over mountainous terrain. We performed multi-scale simulations using<br>WRF’s different Planetary Boundary Layer (PBL) parameterizations as well as Large Eddy Simulation (LES)<br>and compared the results with the detailed field measurements. WRF-LES model improved the mean flow field<br>as well as second-order flow statistics. Mean fluctuations and turbulent kinetic energy fields from WRF-LES<br>solution are investigated in several cross-sections around the hill which shows good agreement with measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document