Performance Improvement of a Centrifugal Compressor Using a Developed 3D Inverse Design Method

Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Farzad Poursadegh ◽  
Majid R. Shahhosseini

This paper is concerned with performance improvement of a centrifugal compressor by evolution of an inverse design method for 3D design approaches. The design procedure encompasses two major steps. Firstly, using the BSA inverse design algorithm on the meridional plane of the impellers, the meridional geometries for impellers are defined based on modified pressure distribution. Furthermore, an original and progressive algorithm is developed for 3D design of angular coordinates of the impellers on the blade to blade planes of them based on blades loading improvements. Full 3D analysis of the designed compressor using Reynolds Average Navier-Stokes equations, and its comparison with the analysis results of the current compressor, shows that the total pressure ratio of the designed compressor at the same operation condition is enhanced more than 5 percent.

Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Mohammad Durali ◽  
Ali Hajilouy-Benisi

This paper is concerned with a quasi-3D design method for centrifugal compressor impeller in the meridional plane. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain of which some unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, the unknown walls are composed of a set of virtual balls that move freely along the specified directions called spines. The difference between target and current pressure distribution causes to deform flexible boundary at each modification step. In order to validate the quasi-3D analysis code, an existing compressor is investigated by some experiments in which several static pressure points on the shroud, the flow parameters at the compressor inlet and outlet are measured. Comparison of the quasi-3D analysis results with experimental results shows good agreement. Also, a full 3D Navier-Stokes code is used to analyze the existing and designed compressor numerically. The results show that the momentum decrease near the shroud wall in the existing compressor is removed by hub-shroud modification resulting an improvement in performance by 0.6 percent.


Author(s):  
A. Madadi ◽  
M. J. Kermani ◽  
M. Nili-Ahmadabadi

Recently, an inverse design algorithm called ball–spine algorithm (BSA) was introduced for the design of 2D ducts. In this approach, the walls are considered as a set of virtual balls that can move freely along the straight directions called spines. In the present work, the method is developed for quasi-three-dimensional (quasi-3D) design of S-shaped ducts with a predefined width. To do so, the upper and lower lines of the S-duct symmetric section are modified under the BSA and then, the 3D S-duct geometry is obtained based on elliptic cross-sectional profiles. The target pressure distributions (TPDs) along the upper and lower lines are prescribed so that separation does not occur. Finally, the flow through the designed S-duct is numerically analyzed using a viscous flow solver with the SST turbulence model to validate the designed S-duct performance. The performance of the designed S-duct is compared to original and optimized versions of a benchmark S-duct diffuser. Results show that the present S-duct has a better performance.


Author(s):  
Raja Ramamurthy ◽  
Wahid Ghaly

The midspan section of Rotor 67 is redesigned simultaneously at two different design points using a new inverse blade design method where the blade walls move with a virtual velocity distribution derived from the difference between the current and the target pressure distributions on the blade surfaces. This inverse method is fully consistent with the viscous flow assumption and is implemented into the time accurate solution of the Reynolds-Averaged Navier-Stokes equations that are expressed in an arbitrary Lagrangian-Eulerian (ALE) form to account for mesh movement. A cell-vertex finite volume method of the Jameson type is used to discretize the equations in space; time accurate integration is obtained using dual time stepping. An algebraic Baldwin-Lomax turbulence model is used for turbulence closure. The CFD analysis provides the initial blade pressure distributions at both operating points, e.g. at two different back pressures and/or blade speeds. At each operating point, a target pressure distribution that results in a performance improvement, is prescribed. The inverse design method is then used to reach the prescribed target pressure distributions at both operating points, simultaneously. This is done by using a weighted average of the difference between the target and current pressure distributions at the two operating points, to modify the airfoil profile. The results show that by carefully tailoring the target pressure loadings at the two design points, some performance improvement can be achieved over the entire range between the two operating points.


Author(s):  
Benedikt Roidl ◽  
Wahid Ghaly

A new dual-point inverse blade design method was developed and applied to the redesign of a highly loaded transonic vane, the VKI-LS89, and the first 2.5 stages of a low speed subsonic turbine, the E/TU-4 4-stage turbine that is built and tested at the university of Hannover, Germany. In this inverse method, the blade walls move with a virtual velocity distribution derived from the difference between the current and the target pressure distributions on the blade surfaces at both operating points. This new inverse method is fully consistent with the viscous flow assumption and is implemented into the time accurate solution of the Reynolds-Averaged Navier-Stokes equations. An algebraic Baldwin-Lomax turbulence model is used for turbulence closure. The mixing plane approach is used to couple the stator and rotor regions. The dual-point inverse design method is then used to explore the effect of different choices of the pressure distributions on the suction surface of one or more rotor/stator on the blade/stage performance. The results show that single point inverse design resulted in a local performance improvement whereas the dual point design method allowed for improving the performance of both VKI-LS89 vane and E/TU-4 2.5 stage turbines over a wide range of operation.


Author(s):  
J. C. Pa´scoa ◽  
A. C. Mendes ◽  
L. M. C. Gato

This paper presents the results of the aerodynamic redesign of an annular turbine blade row. The inverse method herein applied is an extension to 3D of an iterative inverse design method based on the imposition of the blade load, thickness distribution and stacking line. We define a mass-averaged mean tangential velocity over one blade pitch, ru¯θ, as the main design variable, since its derivative is related to the aerodynamic load. A time-lagged formulation for the 3D camber surface generator is given in order to include the blade thickness distribution into the design algorithm. The hybrid viscous-inviscid design code comprises three main components: the blade update algorithm; a fast inviscid 3D Euler code; and a viscous analysis code. The blade geometry and flow conditions are typical of LP turbine nozzle guide vanes. The design method will demonstrate its ability to redesign blade rows that achieve lower flow losses and a more uniform exit flow angle distribution. The performance of the new blades is checked by means of a Navier-Stokes computation using the κ–ε turbulence model. The presented results show a minor decrease in the losses and a better redistribution of the exit flow angle.


Author(s):  
Jiangnan Zhang ◽  
Pedro Gomes ◽  
Mehrdad Zangeneh ◽  
Benjamin Choo

It is found that the ideal gas assumption is not proper for the design of turbomachinery blades using supercritical CO2 (S-CO2) as working fluid especially near the critical point. Therefore, the inverse design method which has been successfully applied to the ideal gas is extended to applications for the real gas by using a real gas property lookup table. A fast interpolation lookup approach is implemented which can be applied both in superheated and two-phase regimes. This method is applied to the design of a centrifugal compressor blade and a radial-inflow turbine blade for a S-CO2 recompression Brayton cycle. The stage aerodynamic performance (volute included) of the compressor and turbine is validated numerically by using the commercial CFD code ANSYS CFX R162. The structural integrity of the designs is also confirmed by using ANSYS Workbench Mechanical R162.


Author(s):  
M. Schleer ◽  
S. S. Hong ◽  
M. Zangeneh ◽  
C. Roduner ◽  
B. Ribi ◽  
...  

This paper presents an experimental investigation of two centrifugal compressor stage configurations. The baseline configuration has been designed using conventional design engineering tools. The second configuration was designed using advanced inverse design rules as described in part 1 (Zangeneh et al. 2003). It is designed to match the choke flow as well as the best point of the conventionally designed stage. The experimental investigation is conducted in the industry-scale centrifugal compressor facility at the Turbomachinery Laboratory of the Swiss Federal Institute of Technology. Performance maps for both configurations at several speed-lines are presented. These plots show the overall behavior of the stages designed using the different design approaches and their operating range. Time resolved measurements show details of the unsteady flow field within the diffuser close to the impeller exit. The time resolved data has been analyzed to assist the explanation of changes in the characteristics and associated efficiency penalties and gains. The processed data shows the benefits of the new inverse design method with respect to an improvement of the compressor efficiency and the operating range. It is seen that the application of an inverse design method results in a more uniform flow into the diffuser.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Benedikt Roidl ◽  
Wahid Ghaly

The midspan section of a low speed subsonic turbine stage that is built and tested at DFVLR, Cologne, is redesigned using a new inverse blade design method, where the blade walls move with a virtual velocity distribution derived from the difference between the current and target pressure distributions on the blade surfaces. This new inverse method is fully consistent with the viscous flow assumption and is implemented into the time-accurate solution of the Reynolds-averaged Navier–Stokes equations. An algebraic Baldwin–Lomax turbulence model is used for turbulence closure. The mixing plane approach is used to couple the stator and rotor regions. The computational fluid dynamics (CFD) analysis formulation is first assessed against the turbine stage experimental data. The inverse formulation that is implemented in the same CFD code is assessed for its robustness and merits. The inverse design method is then used to study the effect of the rotor pressure loading on the blade shape and stage performance. It is also used to simultaneously redesign both stator and rotor blades for improved stage performance. The results show that by carefully tailoring the target pressure loading on both blade rows, improvement can be achieved in the stage performance.


Author(s):  
Benedikt Roidl ◽  
Wahid Ghaly

The midspan section of a low speed subsonic turbine stage that is built and tested at DFVLR, Cologne, is redesigned using a new inverse blade design method where the blade walls move with a virtual velocity distribution derived from the difference between the current and the target pressure distributions on the blade surfaces. This new inverse method is fully consistent with the viscous flow assumption and is implemented into the time accurate solution of the Reynolds-Averaged Navier-Stokes equations. An algebraic Baldwin-Lomax turbulence model is used for turbulence closure. The mixing plane approach is used to couple the stator and the rotor regions. The CFD analysis formulation is first assessed against the turbine stage experimental data. The inverse formulation that is implemented in the same CFD code is also assessed for its robustness and merits. The inverse design method is then used to study the effect of the rotor pressure loading on the blade shape and stage performance. It is also used to simultaneously redesign both stator and rotor blades for improved stage performance. The results show that by carefully tailoring the target pressure loading on both blade rows, improvement can be achieved in the stage performance.


Sign in / Sign up

Export Citation Format

Share Document