Preliminary Study of Supercritical CO2 Mixed With Gases for Power Cycle in Warm Environments

Author(s):  
Seungjoon Baik ◽  
Jeong Ik Lee

The supercritical carbon dioxide (S-CO2) Brayton power cycle has been receiving worldwide attention due to the high thermal efficiency and compact system configuration. Because of the incompressible liquid like characteristic (e.g. high density, low compressibility) of the CO2 near the critical point (30.98 °C, 7.38MPa), an S-CO2 Brayton cycle can achieve high efficiency by reducing compression work. In order to utilize the S-CO2 power conversion technology in various applications, such as distributed power generation and marine propulsion, air-cooled waste heat removal system is necessary. However, the critical temperature of CO2 (30.98 °C) is an intrinsic limitation on the system minimum temperature. Because of the small difference with atmospheric temperature, a large amount of cooling air flow or a very large heat exchanger is required to reach the target minimum temperature. In this paper, to improve the system efficiency and ease the problem of air-cooled waste heat removal system, the mixture of supercritical CO2 with other fluids has been studied. Also, the preliminary performance test results of CO2 mixture with pre-existing experimental facility are evaluated.

Author(s):  
Marcel Strätz ◽  
Jörg Starflinger ◽  
Rainer Mertz ◽  
Michael Seewald ◽  
Sebastian Schuster ◽  
...  

In case of an accident in a nuclear power plant with combined initiating events, (loss of ultimate heat sink and station blackout) additional heat removal system could transfer the decay heat from the core to and diverse ultimate heat sink. On additional heat removal system, which is based upon a Brayton cycle with supercritical CO2 as working fluid, is currently investigated within an EU-funded project, sCO2-HeRo (Supercritical carbon dioxide heat removal system). It shall serve as a self-launching, self-propelling and self-sustaining decay heat removal system to be used in severe accident scenarios. Since a Brayton cycle produces more electric power that it consumes, the excess electric power can be used inside the power plant, e.g. recharging batteries. A small-scale demonstrator will be attached to the PWR glass model at Gesellschaft für Simulatorforschung GfS, Essen, Germany. In order to design and build this small-scale model, cycle calculations are performed to determine the design parameters from which a layout can be derived.


Author(s):  
Wolfgang Flaig ◽  
Rainer Mertz ◽  
Joerg Starflinger

Supercritical fluids show great potential as future coolants for nuclear reactors, thermal power, and solar power plants. Compared to the subcritical condition, supercritical fluids show advantages in heat transfer due to thermodynamic properties near the critical point. A specific field of interest is an innovative decay heat removal system for nuclear power plants, which is based on a turbine-compressor system with supercritical CO2 as the working fluid. In case of a severe accident, this system converts the decay heat into excess electricity and low-temperature waste heat, which can be emitted to the ambient air. To guarantee the retrofitting of this decay heat removal system into existing nuclear power plants, the heat exchanger (HE) needs to be as compact and efficient as possible. Therefore, a diffusion-bonded plate heat exchanger (DBHE) with mini channels was developed and manufactured. This DBHE was tested to gain data of the transferable heat power and the pressure loss. A multipurpose facility has been built at Institut für Kernenergetik und Energiesysteme (IKE) for various experimental investigations on supercritical CO2, which is in operation now. It consists of a closed loop where the CO2 is compressed to supercritical state and delivered to a test section in which the experiments are run. The test facility is designed to carry out experimental investigations with CO2 mass flows up to 0.111 kg/s, pressures up to 12 MPa, and temperatures up to 150 °C. This paper describes the development and setup of the facility as well as the first experimental investigation.


2021 ◽  
Vol 248 ◽  
pp. 01021
Author(s):  
Chongju Hu ◽  
Hongyan Wang ◽  
Bo Wu ◽  
Xiuxiang Zhang ◽  
Pinghua Zhang

Heat pipe have the characteristics of high thermal conductivity, high safety performance, without external power, etc. In this paper, The numerical simulation CFD software FLUENT is used to study the thermal-hydraulic characteristics performance of heat pipe waste heat removal system with heat pipe for lead-based reactor under normal conditions and Station-Black-Out (SBO) with partial heat pipes damage respectively. Results showed that heat pipes promote heat transfer in the reactor and reduced the temperature of the fluid around the reactor during normal operation; Heat in the core could be removed smoothly by the PRHRS during SBO accident without heat pipe damage ; and when the proportion of failed heat pipes is less than 50% during SBO accident , the PRHRS could still ensure safe operation of the reactor and the distribution of failed heat pipes in the reactor results the core temperature variation by less than 5 K.


2021 ◽  
Vol 378 ◽  
pp. 111259
Author(s):  
A. Pantano ◽  
P. Gauthe ◽  
M. Errigo ◽  
P. Sciora

2016 ◽  
Vol 89 ◽  
pp. 56-62 ◽  
Author(s):  
Yeon-Sik Kim ◽  
Sung-Won Bae ◽  
Seok Cho ◽  
Kyoung-Ho Kang ◽  
Hyun-Sik Park

Sign in / Sign up

Export Citation Format

Share Document