Computational Fluid Dynamics Simulations of Windage Loss in a Spur Gear

Author(s):  
Murat K. Aktas ◽  
Mehmet A. Yavuz ◽  
Ali K. Ersan

Windage losses arise due to the viscous dissipation of air -oil mist flow driven by the rotating faces, sides of the gears in a gearbox. The windage losses can consume up to 3% of the transmitted power. In the open literature, theoretical investigations mostly focused on the single phase (air) flow. In the present study we attempt to elucidate the complex flow physics between the gears by considering the effects of oil particles in the air flow. The goals of this work is to develop a physical understanding of the aerodynamics of gear windage loss. A spur gear geometry was considered, for which experimental and theoretical data are available. A commercial Computational Fluid Dynamics algorithm (CFD++) was utilized for the numerical simulations. The first group of simulations were performed for a single phase (air) flow in order to validate the numerical approach. The results showed good agreement with the experiment. Various shrouding configurations and free spinning cases are studied at different rotation speeds of the gear. The effects of the oil droplets on the windage losses were quantified.

2018 ◽  
Vol 8 (3) ◽  
pp. 2897-2900
Author(s):  
F. P. Lucas ◽  
R. Huebner

This paper aims to apply computational fluid dynamics (CFD) to simulate air flow and air flow with water droplets, as a reasonable hypothesis for real flows, in order to evaluate a vertical separator vessel with inclined half-pipe inlet device (slope inlet). Thus, this type was compared to a separator vessel without inlet device (straight inlet). The results demonstrated a different performance for the two types in terms of air distribution and liquid removal efficiency.


2016 ◽  
Vol 311 (6) ◽  
pp. H1498-H1508 ◽  
Author(s):  
Hadi Wiputra ◽  
Chang Quan Lai ◽  
Guat Ling Lim ◽  
Joel Jia Wei Heng ◽  
Lan Guo ◽  
...  

There are 0.6–1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2–0.9 mmHg during systole, and 0.1–0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2–4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts.


Author(s):  
Christophe Diakodimitris ◽  
Youssef R. Iskandar ◽  
Patrick Hendrick ◽  
Pierre Slangen

Due to the complexity of multiphase flows, they are often studied with numerical simulations. These simulations must be validated with experimental results. This paper introduces a new approach to initialize the continuous phase of gas–liquid flows generated by airblast nozzles for microlubrication applications with a recently modified commercial computational fluid dynamics (CFD) code FINE™/Open. Microlubrication is a technology used in metal machining where the coolant flow rate is lower than with conventional flood cooling. In this paper, single-phase gas and two-phase liquid–gas flows are studied. The continuous phase is simulated using Reynolds-averaged Navier–Stokes (RANS) equations coupled with a k–ε turbulence model and the dispersed phase is simulated using a Lagrangian method. To validate these simulations, particle image velocimetry (PIV) and particle dynamics analysis (PDA) measurements have been performed. This study illustrates the possibility of performing complex two-phase simulations with the help of single-phase studies to initialize the continuous phase of the flow (i.e., the gas). The single-phase flow also helps in estimating the magnitudes of the droplet velocities.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
T. van Druenen ◽  
B. Blocken

AbstractSome teams aiming for victory in a mountain stage in cycling take control in the uphill sections of the stage. While drafting, the team imposes a high speed at the front of the peloton defending their team leader from opponent’s attacks. Drafting is a well-known strategy on flat or descending sections and has been studied before in this context. However, there are no systematic and extensive studies in the scientific literature on the aerodynamic effect of uphill drafting. Some studies even suggested that for gradients above 7.2% the speeds drop to 17 km/h and the air resistance can be neglected. In this paper, uphill drafting is analyzed and quantified by means of drag reductions and power reductions obtained by computational fluid dynamics simulations validated with wind tunnel measurements. It is shown that even for gradients above 7.2%, drafting can yield substantial benefits. Drafting allows cyclists to save over 7% of power on a slope of 7.5% at a speed of 6 m/s. At a speed of 8 m/s, this reduction can exceed 16%. Sensitivity analyses indicate that significant power savings can be achieved, also with varying bicycle, cyclist, road and environmental characteristics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


Sign in / Sign up

Export Citation Format

Share Document