scholarly journals Numerical Simulation of Single-Phase and Two-Phase Flows in Separator Vessels with Inclined Half-Pipe Inlet Device Applied in Reciprocating Compressors

2018 ◽  
Vol 8 (3) ◽  
pp. 2897-2900
Author(s):  
F. P. Lucas ◽  
R. Huebner

This paper aims to apply computational fluid dynamics (CFD) to simulate air flow and air flow with water droplets, as a reasonable hypothesis for real flows, in order to evaluate a vertical separator vessel with inclined half-pipe inlet device (slope inlet). Thus, this type was compared to a separator vessel without inlet device (straight inlet). The results demonstrated a different performance for the two types in terms of air distribution and liquid removal efficiency.

2014 ◽  
Vol 1030-1032 ◽  
pp. 819-822
Author(s):  
Xiu Guo Zhao ◽  
Xin Xi Xu ◽  
Chen Su ◽  
Fu Niu ◽  
Shu Lin Tan ◽  
...  

The computational fluid dynamics (CFD) is used to design the position of the inlet and outlet of the air conditioning and analyzing the air flow field and temperature distribution inside the operating room .The result showed the purification air conditioning of the mobile operating room can make air flow along only single direction with effectively avoiding the contamination gathering in the surgical area. It also can improve air cleanness of surgical area and fight against the infection of the patient wound. In the surgical area, the temperature is distributed around 23°C with perfect temperature distribution without obviously temperature gradient.


2001 ◽  
Vol 43 (8) ◽  
pp. 167-173 ◽  
Author(s):  
J. Hague ◽  
C. T. Ta ◽  
M. J. Biggs ◽  
J. A. Sattary

A laboratory model is used to measure the generic flow patterns in dissolved air flotation (DAF). The Perspex model used in this study allows the use of laser Doppler velocimetry (LDV), a non-invasive, high-resolution (±2 mm s−1) laser technique of flow velocity measurement. Measurement of flow velocity in the single-phase situation was first carried out. Air-saturated water was then supplied to the tank and measurements of bubble velocity in the two-phase system were made. Vertical flow re-circulation was observed in the flotation zone. In the bottom of the flotation zone (near the riser) secondary flow re-circulation was observed, but only in the two-phase system. Another phenomenon was the apparent movement of flow across the tank width, which may be due to lateral dispersion of the bubble cloud. Data from preliminary computational fluid dynamics (CFD) models were compared against this measured data in the case of the single-phase system. The CFD model incorporating a k-e model of turbulence was found to give closer agreement with the measured data than the corresponding laminar flow model. The measured velocity data will be used to verify two-phase computational fluid dynamics (CFD) models of DAF.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 38 ◽  
Author(s):  
Zlatko Rek

A two-phase bubbly flow is often found in the process industry. For the efficient operation of such devices, it is important to know the details of the flow. The paper presents a numerical simulation of the rising bubble in a stagnant liquid column. The interFOAM solver from the open source Computational Fluid Dynamics (CFD) toolbox OpenFOAM was used to obtain the necessary data. The constant and dynamic computational grids were used in the numerical simulation. The results of the calculation were compared with the measured values. As expected, by using the dynamic mesh, the bubble trajectory was closer to the experimental results due to the more detailed description of the gas–liquid interface.


2013 ◽  
Vol 368-370 ◽  
pp. 619-623
Author(s):  
Zhen Liu ◽  
Xiao Ling Wang ◽  
Ai Li Zhang

For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground main powerhouse is simulated by the computational fluid dynamics (CFD) to optimize ventilation parameters. A 3D unsteady RNG k-ε model is performed for construction ventilation in the underground main powerhouse. The air-flow field and CO diffusion in the main powerhouse are simulated and analyzed. The two construction ventilation schemes are modelled for the main powerhouse. The optimized ventilation scheme is obtained by comparing the air volume and pressure distributions of the different ventilation schemes.


2013 ◽  
Vol 68 (12) ◽  
pp. 2534-2544 ◽  
Author(s):  
N. Ratkovich ◽  
T. R. Bentzen

Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.


Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


2012 ◽  
Vol 532-533 ◽  
pp. 431-435
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo ◽  
Lei He

Honeycomb ceramic is the key component of the regenerative system. The numerical simulation was performed using FLUENT, a commercial computational fluid dynamics (CFD) code, to compare simulation results to the test data. The regenerative process of a honeycomb ceramic regenerator was simulated under different conditions. Experiments were carried out on honeycomb regenerators that are contained in a methane oxidation reactor. The calculated temperatures of flue gas inlet were compared with the ones measured. The tendency of the temperature is the same as the experiment.


Sign in / Sign up

Export Citation Format

Share Document