Efficient Robust Design for Thermoacoustic Instability Analysis: A Gaussian Process Approach

Author(s):  
Shuai Guo ◽  
Camilo F. Silva ◽  
Wolfgang Polifke

Abstract In the preliminary phase of analysing the thermoacoustic characteristics of a gas turbine combustor, implementing robust design principles is essential to minimize detrimental variations of its thermoacoustic performance under various sources of uncertainties. In the current study, we systematically explore different aspects of robust design in thermoacoustic instability analysis, including risk analysis, control design and inverse tolerance design. We simultaneously take into account multiple thermoacoustic modes and uncertainty sources from both the flame and acoustic boundary parameters. In addition, we introduce the concept of a “risk diagram” based on specific statistical descriptions of the underlying uncertain parameters, which allows practitioners to conveniently visualize the distribution of the modal instability risk over the entire parameter space. Throughout the present study, a machine learning method called “Gaussian Process” (GP) modeling approach is employed to efficiently tackle the challenge posed by the large parameter variational ranges, various statistical descriptions of the parameters as well as the multifaceted nature of robust design analysis. For each of the investigated robust design tasks, we propose an efficient solution strategy and benchmark the accuracy of the results delivered by GP models. We demonstrate that GP models can be flexibly adjusted to various tasks while only requiring one-time training. Their adaptability and efficiency make this modeling approach very appealing for industrial practices.

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Shuai Guo ◽  
Camilo F. Silva ◽  
Wolfgang Polifke

Abstract In the preliminary phase of analyzing the thermoacoustic characteristics of a gas turbine combustor, implementing robust design principles is essential to minimize detrimental variations of its thermoacoustic performance under various sources of uncertainties. In this study, we systematically explore different aspects of robust design in thermoacoustic instability analysis, including risk analysis, control design, and inverse tolerance design. We simultaneously take into account multiple thermoacoustic modes and uncertainty sources from both the flame and acoustic boundary parameters. In addition, we introduce the concept of a “risk diagram” based on specific statistical descriptions of the underlying uncertain parameters, which allows practitioners to conveniently visualize the distribution of the modal instability risk over the entire parameter space. Throughout this study, a machine learning method called “Gaussian process” (GP) modeling approach is employed to efficiently tackle the challenge posed by the large parameter variational ranges, various statistical descriptions of the parameters, as well as the multifaceted nature of robust design analysis. For each of the investigated robust design tasks, we propose an efficient solution strategy and benchmark the accuracy of the results delivered by GP models. We demonstrate that GP models can be flexibly adjusted to various tasks while only requiring one-time training. Their adaptability and efficiency make this modeling approach very appealing for industrial practices.


Author(s):  
Y. Xia ◽  
A. S. Morgans ◽  
W. P. Jones ◽  
J. Rogerson ◽  
G. Bulat ◽  
...  

The thermoacoustic modes of a full scale industrial gas turbine combustor have been predicted numerically. The predictive approach combines low order network modelling of the acoustic waves in a simplified geometry, with a weakly nonlinear flame describing function, obtained from incompressible large eddy simulations of the flame region under upstream forced velocity perturbations, incorporating reduced chemistry mechanisms. Two incompressible solvers, each employing different numbers of reduced chemistry mechanism steps, are used to simulate the turbulent reacting flowfield to predict the flame describing functions. The predictions differ slightly between reduced chemistry approximations, indicating the need for more involved chemistry. These are then incorporated into a low order thermoacoustic solver to predict thermoacoustic modes. For the combustor operating at two different pressures, most thermoacoustic modes are predicted to be stable, in agreement with the experiments. The predicted modal frequencies are in good agreement with the measurements, although some mismatches in the predicted modal growth rates and hence modal stabilities are observed. Overall, these findings lend confidence in this coupled approach for real industrial gas turbine combustors.


Author(s):  
A. M. Mellor ◽  
R. M. Washam

The continuing development of a characteristic time model for gaseous pollutant emissions from conventional gas turbine engines is described. The now engine studied here is the Pratt and Whitney JT9D, and it is shown that universal correlations can be obtained by comparison with previous results. Current limitations of the modeling approach are detailed.


Author(s):  
Kevin M. Ryan ◽  
Jesper Kristensen ◽  
You Ling ◽  
Sayan Ghosh ◽  
Isaac Asher ◽  
...  

Many engineering design and industrial manufacturing applications are tasked with finding optimum designs while dealing with uncertainty in the design parameters. The performance or quality of the design may be sensitive to the input variation, making it difficult to optimize. Probabilistic and robust design optimization methods are used in these scenarios to find the designs that will perform best under the presence of known input uncertainty. Robust design optimization algorithms often require a two-level optimization problem (double-loop) to find a solution. The design optimization outer-loop repeatedly calls a series of inner loops that calculate uncertainty measures of the outputs. This nested optimization problem is computationally expensive and can sometimes render the task infeasible for practical engineering robust design problems. This paper details a single-level metamodel-assisted approach for probabilistic and robust design. An enhanced Gaussian Process (GP) metamodel formulation is used to provide exact values of output uncertainty in the presence of uncertain inputs. The GP model utilizes a squared-exponential kernel function and assumes normally distributed input uncertainty. These two factors together allow for an exact calculation of the first and second moments of the marginal predictive distribution. Predictions of output uncertainty are directly calculated, creating an efficient single-level robust optimization problem. We demonstrate the effectiveness of the single-level GP-assisted robust design approach on multiple engineering example problems, including a beam vibration problem, a cantilevered beam with multiple constraints, and a robust autonomous aircraft flight controller design problem. For the optimization problems investigated in this study, the single-level framework found the robust optimum with a 99.9% savings in function evaluations over the standard two-level approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongpil Joo ◽  
Jongwun Choi ◽  
Namkeun Kim ◽  
Min Chul Lee

AbstractThis study proposes and analyzes a novel methodology that can effectively detect multi-mode combustion instability (CI) in a gas turbine combustor. The experiment is conducted in a model gas turbine combustor, and dynamic pressure (DP) and flame images are examined during the transition from stable to unstable flame, which is driven by changing fuel compositions. As a powerful technique for early detection of CI in multi-mode as well as in single mode, a new filter bank (FB) method based on spectral analysis of DP is proposed. Sequential processing using a triangular filter with Mel-scaling and a Hamming window is applied to increase the accuracy of the FB method, and the instability criterion is determined by calculating the magnitude of FB components. The performance of the FB method is compared with that of two conventional methods that are based on the root-mean-squared DP and temporal kurtosis. From the results, the FB method shows comparable performance in detection speed, sensitivity, and accuracy with other parameters. In addition, the FB components enable the analysis of various frequencies and multi-mode frequencies. Therefore, the FB method can be considered as an additional prognosis tool to determine the multi-mode CI in a monitoring system for gas turbine combustors.


Sign in / Sign up

Export Citation Format

Share Document