Structural Analysis of a Gas Turbine Axial Compressor Blade Eroded by Online Water Washing

Author(s):  
Rossella Cinelli ◽  
Gianluca Maggiani ◽  
Serena Gabriele ◽  
Alessio Castorrini ◽  
Giuliano Agati ◽  
...  

Abstract The Gas Turbine (GT) Axial Compressor (AXCO) can absorb up to the 30% of the power produced by the GT, being the component with the largest impact over the performances. The axial compressor blades might undergo the fouling phenomena as a consequence of the unwanted material locally accumulating during the machine operations. The presence of such polluting substances reduces the aerodynamic efficiency as well as the air intake causing the drop of performances and the increase of the fuel consumption. To address the above-mentioned critical issues, several washing strategies have been implemented so far, among the most promising ones, High Flow On-Line Water Washing (HFOLWW) is worth to mention. Exploiting this technique, the performance levels are preserved, whereas the stops for maintenance should be reduced. Nevertheless, this comes at the cost of a long-term erosion exposure caused by the impact of water washing droplets. Hence, it was deemed necessary to carry out a finite element method (FEM) structural analysis of the first rotor stage of the compressor of an aeroderivative GT, integrated into the HFOLWW scheme, in order to evaluate the fatigue strength of the component subjected to the erosion; possibly along with its acceptability limits. The first step requires the determination of the blade areas affected by erosion, using computational fluid dynamics (CFD) simulations, followed by the creation and the 3D modelling of the damaged geometry. The final step consists in the evaluation of the static stress and the dynamic agents, to perform a fatigue analysis through the Goodman relation and carrying out a simulation of damage propagation exploiting the theory of fracture mechanics. This procedure has been extended to the damage-free baseline component to set-up a model suitable for comparison. The structural analysis confirms the design of the blade, moreover dynamic and static evaluation of the eroded profiles haven’t outlined any working, nor mechanical, issue. This entitles the structural choice of HFOLWW as a system which guarantees full performance levels of the compressor.

2021 ◽  
Author(s):  
Rossella Cinelli ◽  
Gianluca Maggiani ◽  
Serena Gabriele ◽  
Alessio Castorrini ◽  
Giuliano Agati ◽  
...  

Author(s):  
Pio Astrua ◽  
Stefano Cecchi ◽  
Stefano Piola ◽  
Andrea Silingardi ◽  
Federico Bonzani

The operation of a gas turbine is the result of the aero-thermodynamic matching of several components which necessarily experience aging and degradation over time. An approach to treat degradation phenomena of the axial compressor is provided, with an insight into the impact they have on compressor operation and on overall GT performances. The analysis is focused on the surface fouling of compressor blades and on rotor tip clearances variation. A modular model is used to simulate the gas turbine operation in design and off-design conditions and the aerodynamic impact of fouling and rotor tip clearances increase is assessed by means of dedicated loss and deviation correlations implemented in the 1D mid-streamline code of the compressor modules. The two different degradation sources are individually considered and besides the overall GT performance parameters, the analysis includes an evaluation of the compressor degradation impact on the secondary air system.


Author(s):  
Klaus Brun ◽  
William C. Foiles ◽  
Terrence A. Grimley ◽  
Rainer Kurz

An investigation of the effectiveness of online combustion turbine axial compressor washing using various purity grade waters and commercial washing detergents was performed. For this project, blade surface fouling dirt was obtained from gas turbine axial compressor blades installed at various field sites. The dirt was analyzed to determine the composition and consistency of typical blade surface fouling materials. A representative dirt formula and blade coating procedure was developed so that comparative tests could be performed using various cleaning fluids. Dirt coated blades were installed in a wind tunnel capable of simulating compressor operating conditions. A spray nozzle upstream of the blade test section was used for washing blades with five different test liquids to determine the effectiveness or advantages of any liquid. Once this testing was completed, a similar test setup was then utilized to inject a mixture of formulated fouling dirt and the various online cleaning liquids upstream of the blade into the wind tunnel to assess redeposit characteristics. The effect of high-purity water versus regular water on fouling dirt was also studied in separate residue experiments. Results indicate that spraying cleaning fluid into a flowing air stream is a viable means of cleaning a compressor blade. Each of the fluids was able to clean the test blade at both low and high air velocities and at different blade incident angles. Within the parameters/fluids tested, the results indicate that: 1. The blade cleaning is primarily a mechanical function and does not depend on the type of fluid used for cleaning. The results showed that most of the cleaning occurs shortly after the cleaning fluid is introduced into the flow stream. 2. Dirt removed from the blades may redeposit in other areas as the cleaning fluid is evaporated. Redeposit occurred in flow recirculation zones during the cleaning tests, and heated flow tests demonstrated dirt deposit in the presence of a cleaning fluid. In addition, the type of fluid used for cleaning has no effect on the redeposit characteristics of the dirt. 3. Blade erosion was not found to be a significant issue for the short durations that online water-washing was performed. However, uncontrolled water-washing (or overspray) for extended periods of time did result in measureable leading and trailing edge blade erosions.


Author(s):  
Klaus Brun ◽  
Terrence A. Grimley ◽  
William C. Foiles ◽  
Rainer Kurz

An investigation of the effectiveness of online combustion turbine axial compressor washing using various purity grade waters and commercial washing detergents was performed. For this project, blade surface fouling dirt was obtained from gas turbine axial compressor blades installed at various field sites. The dirt was analyzed to determine consistency of typical blade surface fouling materials. A representative dirt formula and blade coating procedure was developed so that comparative tests could be performed using various cleaning fluids. Dirt coated blades were installed in a wind tunnel capable of simulating compressor operating conditions. A spray nozzle upstream of the blade test section was used for washing blades with five different test liquids to determine the effectiveness or advantages of any liquid. Once this testing was completed, a similar test setup was then utilized to inject a mixture of formulated fouling dirt and the various online cleaning liquids upstream of the blade into the wind tunnel to assess redeposit characteristics. The effect of high-purity water versus regular water on fouling dirt was also studied in separate residue experiments. Results indicate that spraying cleaning fluid into a flowing air stream is a viable means of cleaning a compressor blade. Each of the fluids was able to clean the test blade at both low and high air velocities and at different blade incident angles. Within the parameters/fluids tested, the results indicate that: (1) The blade cleaning is primarily a mechanical function and does not depend on the type of fluid used for cleaning. The results showed that most of the cleaning occurs shortly after the cleaning fluid is introduced into the flow stream. (2) Dirt removed from the blades may redeposit in other areas as the cleaning fluid is evaporated. Redeposit occurred in flow recirculation zones during the cleaning tests, and heated flow tests demonstrated dirt deposit in the presence of a cleaning fluid. In addition, the type of fluid used for cleaning has no effect on the redeposit characteristics of the dirt. (3) Blade erosion was not found to be a significant issue for the short durations that online water-washing was performed. However, uncontrolled water-washing (or overspray) for extended periods of time did result in measureable leading and trailing edge blade erosions.


2021 ◽  
Vol 312 ◽  
pp. 11008
Author(s):  
Giuliano Agati ◽  
Francesca Di Gruttola ◽  
Serena Gabriele ◽  
Domenico Simone ◽  
Paolo Venturini ◽  
...  

Gas turbines performance losses are mainly due to the deposition of dirt on the compressor blades that needs to be periodically removed. This is the reason motivating the presence of water washing systems (WWS) in most of the compressor gas turbines. Water washing is generally achieved by installing a number of nozzles on the compressor casing and spraying water that clean the dirty surfaces of the compressor. The side effect of such a technique is the rising risk of erosion due to the impact of water droplets on the compressor blades which is even more pronounced when dealing with online water washing systems that is done while the unit is at normal load. The design of these systems must balance benefits and disadvantages associated to the process itself. The benefits can be measured in terms of water washing efficiency that is a quantity not uniquely defined. In previous works, the authors introduced some indices useful to evaluate the spatial cleaning coverage (the wet to the total surface) and the quantity of water mass actually impacting the dirty surfaces (the impacted to injected mass). On the other hand, water washing erosion is a complex phenomenon depending on several parameters, such as the mechanical properties of the blade material, the impact velocity and angle and the droplet diameter. For this reason, the WWS are strongly influenced by the adopted nozzles and by the injection conditions. The present paper aims at assessing water washing for six different injection conditions in the first stage of a real axial compressor. Two-phase CFD simulations are carried out with Ansys Fluent where a User Defined Function implemented by the authors is used to properly model water droplet erosion mechanism and to obtain all the quantities needed to evaluate the washing quality. Results confirm the strong influence of the injection conditions on the main features of the washing system. The study is part of an ongoing partnership between Baker Hughes and Sapienza University of Rome aiming at maximizing the washing of the compressor blades while maintaining the erosion under specific thresholds.


Author(s):  
Yogi Sheoran ◽  
Bruce Bouldin ◽  
P. Murali Krishnan

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems, like those found on embedded installations on Unmanned Aerial Vehicles (UAVs). These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360° compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.


Author(s):  
Ilaria Dominizi ◽  
Serena Gabriele ◽  
Angela Serra ◽  
Domenico Borello

Abstract Nowadays the climate change is widely recognized as a global threat by both public opinion and industries. Actions to mitigate its causes are gaining momentum within all industries. In the energy field, there is the necessity to reduce emissions and to improve technologies to preserve the environment. LCA analyses of products are fundamental in this context. In the present work, a life cycle assessment has been carried out to calculate the carbon footprint of different water washing processes, as well as their effectiveness in recovering Gas Turbine efficiency losses. Field data have been collected and analyzed to make a comparison of the GT operating conditions before and after the introduction of an innovative high flow online water washing technique. The assessments have been performed using SimaPro software and cover the entire Gas Turbine and Water Washing skids operations, including the airborne emissions, skid pump, the water treatment and the heaters.


Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


2021 ◽  
Author(s):  
Serena Gabriele ◽  
Angela Serra ◽  
Ilaria Dominizi ◽  
Domenico Borello

Author(s):  
K. W. Ramsden

The implementation of new technology in the gas turbine industry is accelerating at a rate which demands increasing specialisation by its engineering design staff. Simultaneously, this industry has been adopting concurrent engineering practices to reduce product lead-time. Accordingly, the industry now requires its engineers to acquire early competence in a wide range of technological disciplines. In addition, the individual must have a thorough understanding of the impact of component design decisions on both other components and on the engine as a whole. Against this background, gas turbine educational providers must respond to these increasing demands with teaching programmes that facilitate a faster and deeper understanding of this very complex product. The ambition of the teacher, however, to adequately prepare the student will continue to be limited by time constraints within lecture courses. Hitherto, this has normally resulted in class worked examples which are necessarily narrow in scope and confined to a limited range of design cases. This paper describes a teaching methodology which is structured to facilitate in-depth understanding of the key interactions between aerodynamics, thermodynamics and mechanical integrity arising in axial compressor design optimisation. This is achieved interactively through a combination of lectures, a hand worked multistage preliminary compressor design, a series of personal computer based design optimisation workshops and a final collective design assessment.


Sign in / Sign up

Export Citation Format

Share Document