A Novel SOFC Thermal Management Strategy of SOFC-GT Hybrid System With Anode and Cathode Control Loops

Author(s):  
Jinwei Chen ◽  
Yuanfu Li ◽  
Huisheng Zhang ◽  
Zhenhua Lu

Abstract The SOFC performance and lifetime highly depend on the operation condition, especially the SOFC operation temperature. The temperature fluctuation causes thermal stress in electrodes and electrolyte ceramics. On the other hand, it also needs to maintain a sufficiently high temperature to enable the efficient transport of oxygen ions across the electrolyte. Therefore, it is necessary to design an effective SOFC temperature management system to guarantee safe and efficient operation. In this paper, a two-side temperature control method is proposed to avoid the temperature difference between anode and cathode. Therefore, the SOFC thermal management system includes two control loops. The anode inlet temperature and cathode inlet temperature are controlled by blowers adjusting the recirculated flow rate. In addition, the control performance of the proposed SOFC thermal management system is compared with one-side temperature control systems. The results show that both anode control loop and cathode control loop are essential to get a better control performance. The SOFC would operate with less efficiency with only anode temperature control. On the other hand, the safety problem would occur with only cathode temperature control. The temperature gradient would be more than the upper limit at a part load condition. Therefore, the SOFC thermal management strategy with anode and cathode temperature control loops is feasible for the SOFC-GT system.

2021 ◽  
Vol 54 (6) ◽  
pp. 200-205
Author(s):  
L. Pimpinella ◽  
O. Mikuláš ◽  
M.S. Ko ◽  
I.H. Bae ◽  
M. Herceg ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2177 ◽  
Author(s):  
Miao Zhao ◽  
Liping Pang ◽  
Meng Liu ◽  
Shizhao Yu ◽  
Xiaodong Mao

With the continuous application of high-power electronic equipment in aircraft, highly efficient heat transfer technology has been emphasized for airborne applications. In this paper, a thermal management system based on an antifreeze liquid cooling loop and a vapor compression refrigeration loop is presented for high-power airborne equipment in a helicopter. The simulation models of the thermal management system are built in order to study its control strategy for the changing flight conditions. The antifreeze-refrigerant evaporator and air-refrigerant condenser are specially validated with the experimental data. A dual feedforward proportion integration differentiation and expert control algorithm are adopted in the inlet temperature of the cold plate and sub-cooling control of the refrigerant by regulating the compressor speed and the fan speed, respectively. A preheating strategy for antifreeze is set up to decrease its flow resistance in cold day conditions. The control strategy for the thermal management system is finally built based on the above control methods. In this paper, two extreme conditions are discussed, including cold and hot days. Both the simulation results show that the superheated, sub-cooling and antifreeze inlet temperature of the cold plate can be controlled at 3 to8 °C, −10 to −3 °C and 18 to22 °C, respectively. Under the same changing flight envelope, the coefficient of performance of the vapor compression refrigeration loop is relatively stable on the cold day, which is about 6, while it has a range of 2.58–4.9 on the hot day.


2005 ◽  
Vol 71 (703) ◽  
pp. 908-913
Author(s):  
Terushige FUJII ◽  
Masanobu WADA ◽  
Keiji NARITA ◽  
Hitoshi ASANO ◽  
Katsumi SUGIMOTO ◽  
...  

2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3375-3383
Author(s):  
Xiangyang Zhao

To improve the service life and performance of lithium cells in new energy electric vehicles, the thermal management system of lithium cells in new energy vehicles is analyzed through simulation experiments in this research. Firstly, the calculation model of set of cells and cooling structure is built, and then a lithium cell management system is designed. On this basis, the cooling structure of lithium cell is optimized. Finally, the simulation results of the calculation model and the simulation results of the heat dissipation performance of the thermal management system in the cooling structure of lithium cell are analyzed, including influence of three factors (coolant flow, inlet temperature of coolant, and discharge multiple) on the heat dissipation of the thermal management system of lithium cell. The results show that the calculation model constructed in this research is feasible. When the optimal structure, coolant flow value, inlet temperature of coolant, and discharge multiple are determined, the thermal management system of lithium cell has a good cooling effect under the optimal parameters. Therefore, the results of this research can provide a good theoretical basis for heat management and heat dispersion technology in new energy electric vehicles.


Author(s):  
Kai Chen ◽  
Junsheng Hou ◽  
Xiaoling Wu ◽  
Yiming Chen ◽  
Mengxuan Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document