On the Effect of Noise Induced Dynamics on Linear Growth Rates of Oscillations in an Electroacoustic Rijke Tube Simulator

2021 ◽  
Author(s):  
Neha Vishnoi ◽  
Pankaj Wahi ◽  
Aditya Saurabh ◽  
Lipika Kabiraj

Abstract Suppressing self-excited thermoacoustic oscillations in combustion chambers is essential for gas turbine system stability. Passive acoustic damping devices such as Helmholtz resonators are commonly employed in modern combustors to address the problem of thermoacoustic instabilities. The estimation of deterministic parameters characterizing flame-acoustic coupling, specifically the stability margins and linear growth/decay rates, is a prerequisite for designing these devices. As gas turbine combustors are typically noisy systems due to the presence of highly turbulent flows and unsteady combustion, it is essential to understand the role of noise and its impact on the estimated system stability. Recently several new results on the stochastic dynamics of thermoacoustic systems and the use of noise-induced dynamics to estimate system stability characteristics have been reported. In the present work, we study the different approaches previously reported on the estimation of linear growth/decay rates from noise-induced dynamics on an electroacoustic Rijke tube (a prototypical thermoacoustic system) simulator. We estimate the growth rates from noisy data obtained from the subthreshold, bistable, and linearly-unstable regions of the observed subcritical Hopf bifurcation and investigate the effect of additive noise intensity. We find that the noise intensity affects the stability boundaries and the estimated growth rates.

Author(s):  
Mirko Bothien ◽  
Nicolas Noiray ◽  
Bruno Schuermans

Modern gas turbine combustors operating in lean-premixed mode are prone to thermoacoustic instabilities. In annular combustion chambers, usually azimuthal acoustic modes are the critical ones interacting with the flame. In case of constructive interference, high amplitude oscillations might result. In this paper, the azimuthal acoustic field of a full-scale engine is investigated in detail. The analyses are based on measurements in a full-scale gas turbine, analytical models to derive the system dynamics, as well as simulations performed with an in-house 3d nonlinear network model. It is shown that the network model is able to reproduce the behaviour observed in the engine. Spectra, linear growth rates, as well as the statistics of the system’s dynamics can be predicted. A previously introduced algorithm is used to extract linear growth rates from engine and model time domain data. The method’s accuracy is confirmed by comparison of the routine’s results to analytically determined growth rates from the network model. The network model is also used to derive a burner staging configuration resulting in the decrease of linear growth rate and thus an increase of engine operation regime; model predictions are verified by full-scale engine measurements. A thorough investigation of the azimuthal modes statistics is performed. Additionally, the network model is used to show that an unfavorable flame temperature distribution with an amplitude of merely 1% of the mean flame temperature can change the azimuthal mode from dominantly rotating to dominantly standing. This is predicted by the network model that only takes into account flame fluctuations in axial direction.


Author(s):  
Nicolas Noiray

Considerable research and development efforts are required to meet the targets of future gas turbine technologies in terms of performance, emissions, and operational flexibility. One of the recurring problems is the constructive coupling between flames and combustor's acoustics. These thermoacoustic interactions can cause high-amplitude dynamic pressure limit cycles, which reduce the lifetime of the hot gas path parts or in the worst-case scenario destroy these mechanical components as a result of a sudden catastrophic event. It is shown in this paper that the dynamics and the statistics of the acoustic signal envelope can be used to identify the linear growth rates hidden behind the observed pulsations, and the results are validated against numerical simulations. This is a major step forward and it will contribute to the development of future gas turbine combustors, because the knowledge of these linear growth rates is essential to develop robust active and passive systems to control these combustion instabilities.


Author(s):  
Vladimir Nickolaevich Krainyuk ◽  
Saule Zhangirovna Asylbekova ◽  
Azis Vasilyevich Shutkarayev

The reservoirs of the K. Satpayev canal are the important fishery water bodies in the Central Kazakhstan. Some of these reservoirs are inhabited by tench, a fish species relatively widely represented in other water systems of the region. In the reservoirs of the canal this species is not the main commercial one but it has a fairly high commercial value due to its popularity with consumers. As part of the research, the growth indicators of Tinca tinca from 4 reservoirs were evaluated, and the data on its growth from 3 more reservoirs were also provided. These samples differ in efficiency and growth rates. It has been found that there is no sexual or generation variability. Growth rates in successive fish generations strongly correlate with each other, which may indirectly indicate the stability of living conditions. The R. Lee’s phenomenon was not marked. In this regard, the calculation of variables of the von Bertalanffy growth equation was carried out without additional data processing. The highest rates of linear growth were characteristic of Tinca tinca from the reservoir of HS No. 9. However, the effectiveness of its growth scheme was the lowest. Population with a longer age range from the reservoir HS No. 3 did not have high linear growth rates, but its growth efficiency was higher. In this case, it is obvious that any assessment of growth will be relative and depend on the goals set for it. In the reservoirs of the canal there are more or less similar conditions for tench populations living due to the specifics of its functioning. The main limiting factor for the growth rate, in our opinion, will be abundance of the species in the reservoir and related trophic factors with a certain influence of withdrawal (fishing, predators).


Author(s):  
Mirko R. Bothien ◽  
Nicolas Noiray ◽  
Bruno Schuermans

Modern gas turbine combustors operating in lean-premixed mode are prone to thermo-acoustic instabilities. In annular combustion chambers, usually azimuthal acoustic modes are the critical ones interacting with the flame. In case of constructive interference, high amplitude oscillations might result. In this paper, the azimuthal acoustic field of a full-scale engine is investigated in detail. The analyses are based on measurements in a full-scale gas turbine, analytical models to derive the system dynamics, as well as simulations performed with an in-house 3d nonlinear network model. It is shown that the network model is able to reproduce the behavior observed in the engine. Spectra, linear growth rates, as well as the statistics of the system's dynamics can be predicted. A previously introduced algorithm is used to extract linear growth rates from engine and model time domain data. The method's accuracy is confirmed by comparison of the routine's results to analytically determined growth rates from the network model. The network model is also used to derive a burner staging configuration, resulting in the decrease of linear growth rate and thus an increase of engine operation regime; model predictions are verified by full-scale engine measurements. A thorough investigation of the azimuthal modes statistics is performed. Additionally, the network model is used to show that an unfavorable flame temperature distribution with an amplitude of merely 1% of the mean flame temperature can change the azimuthal mode from dominantly rotating to dominantly standing. This is predicted by the network model that only takes into account flame fluctuations in axial direction.


Author(s):  
Nicolas Noiray

Considerable research and development efforts are required to meet the targets of future gas turbine technologies in terms of performance, emissions and operational flexibility. One of the recurring problem is the constructive coupling between flames and combustor’s acoustics. These thermoacoustic interactions can cause high amplitude dynamic pressure limit cycles, which reduce the lifetime of the hot-gas-path parts or in the worst case scenario destroy these mechanical components as a result of a sudden catastrophic event. It is shown in this paper that the dynamics and the statistics of the acoustic signal envelope can be used to identify the linear growth rates hidden behind the observed pulsations, and the results are validated against numerical simulations. This is a major step forward and it will contribute to the development of future gas turbine combustors, because the knowledge of these linear growth rates is essential to develop robust active and passive systems to control these combustion instabilities.


2020 ◽  
Vol 8 (8) ◽  
pp. 1476-1496
Author(s):  
V.V. Smirnov

Subject. The article discusses Russia’s economy and analyzes its effectiveness. Objectives. The study attempts to determine to what extent Russia’s economy is effective. Methods. The study is based on the systems approach and the statistical analysis. Results. I discovered significant fluctuations of the structural balance due to changing growth rates of the total gross national debt denominated in the national currency, and the stability of growth rates of governmental revenue. Changes in the RUB exchange rate and an additional growth in GDP are the main stabilizers of the structural balance, as they depend on hydrocarbon export. As a result of the analysis of cash flows, I found that the exports slowed down. Financial resources are strongly centralized, since Moscow and the Moscow Oblast are incrementing their share in the export of mineral resources, oil and refining products and import of electrical machines and equipment. Conclusions and Relevance. The fact that the Russian economy has been effectively organized is proved with the centralization of the economic power and the limits through the cross-regional corporation, such as Moscow and the Moscow Oblast, which is resilient to any regional difficulties ensuring the economic growth and sustainable development. The findings would be valuable for the political and economic community to outline and substantiate actions to keep rates of the economic growth and sustainable development of the Russian economy.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2012 ◽  
Vol 516-517 ◽  
pp. 1877-1880
Author(s):  
Zhi Tao Wang ◽  
Shu Ying Li ◽  
Xiao Xia Huang ◽  
Tie Lei Li

Based on modular modeling idea, the modular model of marine generation system was set by the technology of systematic simulation. One set of simulation models of marine gas turbine generation system was generated. Results show that flywheel energy storage device can enhance the stability of power grid and play a better role in making marine gas turbine generation system stable under heavy load fluctuations.


2013 ◽  
Vol 846-847 ◽  
pp. 190-194
Author(s):  
Shu Jun Yin ◽  
Xue Ren Li ◽  
Ji Geng Luo

The paper designs a three-phase high voltage power supply system based on active disturbance rejection controller which make single-chip microcomputer ATmega128 as the main control chip and the system improve the stability and control precision of dust removing power. Engineering practice shows that, the DC power supply system has the advantages of convenient operation, high work efficiency, system stability.


Sign in / Sign up

Export Citation Format

Share Document