Fouling Effects on Wet Gas Compressor Performance: An Experimental Investigation

2021 ◽  
Author(s):  
Dagfinn Mæland ◽  
Lars E. Bakken

Abstract Achieving profitability in mature areas such as the Norwegian continental shelf forces the oil and gas industry to apply innovative solutions to increase oil recovery and to reduce both operational and investment costs. Wet gas compressors are promising machines for increasing oil recovery from existing fields and to allow for production from small satellite fields in the proximity of existing infrastructure. A prerequisite for successful implementation of subsea wet gas compressors high reliability. Knowledge of possible failure modes is important. The effect of performance degradation due to fouling has been observed during wet gas compressor testing at K-Lab and has initiated further work to better understand and quantify the effects of fouling in wet conditions compared to dry conditions. A test campaign was conducted at the Norwegian University of Science and Technology (NTNU) to investigate the effect of fouled centrifugal compressor performance in both wet and dry conditions. The results documenting these effects are presented together with a proposed model for correcting the effects of fouling between dry and wet conditions.

2021 ◽  
Vol 73 (01) ◽  
pp. 12-13
Author(s):  
Manas Pathak ◽  
Tonya Cosby ◽  
Robert K. Perrons

Artificial intelligence (AI) has captivated the imagination of science-fiction movie audiences for many years and has been used in the upstream oil and gas industry for more than a decade (Mohaghegh 2005, 2011). But few industries evolve more quickly than those from Silicon Valley, and it accordingly follows that the technology has grown and changed considerably since this discussion began. The oil and gas industry, therefore, is at a point where it would be prudent to take stock of what has been achieved with AI in the sector, to provide a sober assessment of what has delivered value and what has not among the myriad implementations made so far, and to figure out how best to leverage this technology in the future in light of these learnings. When one looks at the long arc of AI in the oil and gas industry, a few important truths emerge. First among these is the fact that not all AI is the same. There is a spectrum of technological sophistication. Hollywood and the media have always been fascinated by the idea of artificial superintelligence and general intelligence systems capable of mimicking the actions and behaviors of real people. Those kinds of systems would have the ability to learn, perceive, understand, and function in human-like ways (Joshi 2019). As alluring as these types of AI are, however, they bear little resemblance to what actually has been delivered to the upstream industry. Instead, we mostly have seen much less ambitious “narrow AI” applications that very capably handle a specific task, such as quickly digesting thousands of pages of historical reports (Kimbleton and Matson 2018), detecting potential failures in progressive cavity pumps (Jacobs 2018), predicting oil and gas exports (Windarto et al. 2017), offering improvements for reservoir models (Mohaghegh 2011), or estimating oil-recovery factors (Mahmoud et al. 2019). But let’s face it: As impressive and commendable as these applications have been, they fall far short of the ambitious vision of highly autonomous systems that are capable of thinking about things outside of the narrow range of tasks explicitly handed to them. What is more, many of these narrow AI applications have tended to be modified versions of fairly generic solutions that were originally designed for other industries and that were then usefully extended to the oil and gas industry with a modest amount of tailoring. In other words, relatively little AI has been occurring in a way that had the oil and gas sector in mind from the outset. The second important truth is that human judgment still matters. What some technology vendors have referred to as “augmented intelligence” (Kimbleton and Matson 2018), whereby AI supplements human judgment rather than sup-plants it, is not merely an alternative way of approaching AI; rather, it is coming into focus that this is probably the most sensible way forward for this technology.


2020 ◽  
Vol 72 (12) ◽  
pp. 34-37
Author(s):  
Demetra V. Collia ◽  
Roland L. Moreau

Introduction In the aftermath of the Deepwater Horizon oil spill, the oil and gas industry, regulators, and other stakeholders recognized the need for increased collaboration and data sharing to augment their ability to better identify safety risks and address them before an accident occurs. The SafeOCS program is one such collaboration between industry and government. It is a voluntary confidential reporting program that collects and analyzes data to advance safety in oil and gas operations on the Outer Continental Shelf (OCS). The US Bureau of Safety and Environmental Enforcement (BSEE) established the program with input from industry and then entered into an agreement with the US Bureau of Transportation Statistics (BTS) to develop, implement, and operate the program. As a principal statistical agency, BTS has considerable data-collection-and-analysis expertise with near-miss reporting systems for other industries and the statutory authority to protect the confidentiality of the reported information and the reporter’s identify. Source data submitted to BTS are not subject to subpoena, legal discovery, or Freedom of Information Act (FOIA) requests. Solving for the Gap Across industries, companies have long realized the benefits of collecting and analyzing data around safety and environmental events to identify risks and take actions to prevent reoccurrence. These activities are aided by industry associations that collect and share event information and develop recommended practices to improve performance. In high-reliability industries such as aviation and nuclear, it is common practice to report and share events among companies and for the regulators to identify hidden trends and create or update existing recommended practices, regulations, or other controls. The challenge for the offshore oil and gas industry is that industry associations and the regulator are typically limited to collecting data on agency-reportable incidents. With this limitation, other high-learning-value events or observed conditions could go unnoticed as a trend until a major event occurs. This lack of timely data represented an opportunity for the industry and the offshore regulator (BSEE) to collaborate on a means of gathering safety-event data that would allow for analysis and identification of trends, thereby enabling appropriate interventions to prevent major incidents and foster continuous improvement. The SafeOCS Industry Safety Data (ISD) program provides an effective process for capturing these trends by looking across a wider spectrum of events, including those with no consequences.


World Science ◽  
2019 ◽  
Vol 3 (5(45)) ◽  
pp. 16-21
Author(s):  
Мирхамидова Д. Н. ◽  
Атаханова Ш. С. ◽  
Соатов Ф. Й.

In article researches on establishment of influence of geological and technology factors on efficiency of investment projects, determination of risks at implementation of investment projects in the oil and gas industry and feature and factors for successful implementation of investment projects are considered.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000075-000081
Author(s):  
Ramesh Khanna ◽  
Srinivasan Venkataraman

Harsh Environment approved components/ designs require high reliability as well as availability of power to meet their system needs. The paper will explore the various design constrains imposed on the high temperature designs. Down hole oil and gas industry requires high reliability components that can withstand high temperature. Discrete component selection, packaging and constrains imposed by various specification requirements to meet harsh environment approval are critical aspect of high-temp designs. High temperature PCB material, PCB layout techniques, trace characteristics are an important aspect of high-temperature PCB design and will be explored in the article. Buck Converters are the basic building blocks, but in order to meet system requirements to power FPGA's where low output voltage and high currents are required. Converter must be able to provide wider step down ratios with high transient response so buck converters are used. The paper with explore the various features of a buck-based POL converter design. Low noise forces the need for Low-dropout (LDO) Regulators that can operate at high Temperatures up to 210°C. This paper will address the power requirements to meet system needs.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000536-000541
Author(s):  
Saeed Rafie ◽  
Youssef Boulaknadal

Abstract Electro-mechanical relays (EMRs) are widely used in variety of manufacturing industries including oil and gas. One of their applications in the oil and gas industry is in the design of downhole logging wireline and measurement-while-drilling/logging-while-drilling (MWD/LWD) instruments such as magnetic resonance instruments, formation testing instruments, cement bond tools, etc. EMRs are mainly electrically operated switches that multiplex high-powered circuits using a low-power signal. Typically, EMRs consist of one or two wire coils wrapped around magnetic cores, a movable armature, and a set of contact(s) that reside inside a sealed vacuum compartment. The structural durability and reliability of EMRs has been the subject of research for many years, and these characteristics are considered a prime reliability concerns in the oil and gas industry. Their poor reliability has been documented by their several inherent failure modes, e.g., limited life expectancy due to shock, vibration, temperature and moisture, thermal stresses caused by soldering, contact wear, contact bouncing, and contact arcing/welding. This paper presents results from a reliability study and an engineering assessment to determine the applicability and functionality of EMRs in electromagnetic-acoustic sensors. The discussion includes steps to improve and minimize the risk.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 649 ◽  
Author(s):  
Moath Alrifaey ◽  
Tang Sai Hong ◽  
Eris Supeni ◽  
Azizan As’arry ◽  
Chun Ang

The oil and gas industry is looking for ways to accurately identify and prioritize the failure modes (FMs) of the equipment. Failure mode and effect analysis (FMEA) is the most important tool used in the maintenance approach for the prevention of malfunctioning of the equipment. Current developments in the FMEA technique are mainly focused on addressing the drawbacks of the conventional risk priority number calculations, but the group effects and interrelationships of FMs on other measurements are neglected. In the present study, a hybrid distribution risk assessment framework was proposed to fill these gaps based on the combination of modified linguistic FMEA (LFMEA), Analytic Network Process (ANP), and Decision Making Trial and Evaluation Laboratory (DEMATEL) techniques. The hybrid framework of FMEA was conducted in a hazardous environment at a power generation unit in an oil and gas plant located in Yemen. The results show that mechanical and gas leakage FM in electrical generators posed a greater risk, which critically affects other FMs within the plant. It was observed that the suggested framework produced a precise ranking of FMs, with a clear relationship among FMs. Also, the comparisons of the proposed framework with previous studies demonstrated the multidisciplinary applications of the present framework.


Author(s):  
T. Yoshino ◽  
H. Masuda ◽  
H. Hosoda ◽  
M. Tsukakoshi ◽  
M. A. Mostafa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document