A comparison of correlations used for Venturi wet gas metering in oil and gas industry

2007 ◽  
Vol 57 (3-4) ◽  
pp. 247-256 ◽  
Author(s):  
Fang Lide ◽  
Zhang Tao ◽  
Jin Ningde
Author(s):  
Matteo Bertoneri ◽  
Simone Duni ◽  
David Ransom ◽  
Luigi Podestà ◽  
Massimo Camatti ◽  
...  

The oil and gas industry is moving forward to access the most remote gas reserves and enhance the exploitation of the existing installation or postponing their tail-end. To achieve these accomplishments several technology challenges are being unveiled. In topside upstream application both offshore and onshore, one important technology issue is the capability to compress gas with a significant amount of liquids and it assumes a special interest in case of the facilities revamping. Nevertheless is in the subsea environment where this technology issue becomes really challenging. In order to properly design and size a compressor/motor system for subsea wet gas compression, one must be able to adequately predict the compressor performance with mixed phase flow. This paper presents the results from an experimental test program which investigated the performance of a centrifugal compressor at various wet gas conditions with elevated suction pressure. Performance tests are completed on a two stage centrifugal compressor with a mixture of air and water at suction pressures of 20 bar (300 psi). The compressor is subjected to flow with liquid volume fractions ranging from 0 to 5% along three speedlines. The performance measurements are made in accordance with ASME PTC-10 specifications with an additional torque measurement on the shaft between the compressor and gearbox. At each test condition, once the liquid is injected in the air flow, an increase in pressure ratio occurs. This testifies the compressor is still able to work in presence of water. However, increasing the amount of liquid injected a decreased polytropic head together with an increased absorbed actual power by the compressor cause a deterioration of its efficiency. Moreover when liquid is introduced into the flow, the discharge temperature of the compressor reduces significantly. The performance results and trends mentioned above are reviewed in the detail in this paper.


Author(s):  
Gioia Falcone ◽  
Claudio Alimonti

Since the early 1990’s, when the first commercial meters started to appear, Multiphase Flow Metering (MFM) has grown from being an area of R&D to representing a discipline in its own right within the oil and gas industry. The total figure for MFM installations worldwide is now over 1,800. Field applications include production optimisation, wet gas metering, mobile well testing and production allocation. However, MFM has not yet achieved its full potential. Despite an impressive improvement in the reliability of sensors and mechanical parts (particularly for subsea installations) over the past few years, there remain unresolved questions regarding the accuracy and range of applicability of today’s MFM technology. There is also a tendency to forget the complexity of multiphase flow and to evaluate the overall performance of a MFM as a “black box”, often neglecting all the possible uncertainties that are inherent in each individual measurement solutions. This paper reviews the inherent limitations of some classical MFM techniques. It highlights the impact of instruments rangeability, empirical correlations for pressure drop devices and fluids characterisation on the error propagation analysis in the “black box”. It also provides a comprehensive review of wet gas definitions for the oil and gas industry. Several attempts have been made to define “wet gas” for the purpose of metering streams at high gas-volume-fractions, but a single definition of wet gas still does not exist. The measurement of multiphase flows presents unique challenges that have not yet been fully resolved. However, the challenges are exciting and the authors have no doubts that new milestones will soon be set in this area. Today’s MFM technology has already become one piece of the optimised production system jigsaw. MFM has succeeded in fitting with other technologies toward global field-wide solutions. The ideal MFM of the future is one that provides unambiguous measurements of key parameters from which the flow rates can be deduced independently from flow regimes and fluid properties.


2021 ◽  
Author(s):  
Dagfinn Mæland ◽  
Lars E. Bakken

Abstract Achieving profitability in mature areas such as the Norwegian continental shelf forces the oil and gas industry to apply innovative solutions to increase oil recovery and to reduce both operational and investment costs. Wet gas compressors are promising machines for increasing oil recovery from existing fields and to allow for production from small satellite fields in the proximity of existing infrastructure. A prerequisite for successful implementation of subsea wet gas compressors high reliability. Knowledge of possible failure modes is important. The effect of performance degradation due to fouling has been observed during wet gas compressor testing at K-Lab and has initiated further work to better understand and quantify the effects of fouling in wet conditions compared to dry conditions. A test campaign was conducted at the Norwegian University of Science and Technology (NTNU) to investigate the effect of fouled centrifugal compressor performance in both wet and dry conditions. The results documenting these effects are presented together with a proposed model for correcting the effects of fouling between dry and wet conditions.


2014 ◽  
Vol 980 ◽  
pp. 117-121
Author(s):  
F.M. Mohd Hashim ◽  
M.F.A Ahmad

Flow assurances in deep water pipeline have received greater attention in oil and gas industry in order to meet the optimum production of hydrocarbons. However, existence of free water in the gas pipeline decreases production output and increases operational cost and time. Alternatively, anew supersonic subsea compact wet gas separator is design to remove free water from gas transmission pipeline. The key parts of the new design separators is the nozzle.The performanceof supersonic flow is highly related on the design of the nozzle. Therefore, the objective of this paper isto find correlation between the angle of the nozzle against separator flow performance, namely velocity. From the analysis done, it can be concluded thatat nozzle angle of 15°, maximum velocity is achievedthus producing supersonic flow.


Author(s):  
Lars Brenne ◽  
Tor Bjo̸rge ◽  
Lars E. Bakken ◽  
O̸yvind Hundseid

Wet gas compression technology renders possible new opportunities for future gas/condensate fields by means of sub sea boosting and increased recovery for fields in tail-end production. In the paper arguments for the wet gas compression concept are given. At present no commercial wet gas compressor for the petroleum sector is available. StatoilHydro projects are currently investigating the wet gas compressors suitability to be used and integrated in gas field production. The centrifugal compressor is known as a robust concept and the use is dominant in the oil and gas industry. It has therefore been of specific interest to evaluate its capability of handling wet hydrocarbon fluids. Statoil initiated a wet gas test of a 2.8 MW single-stage compressor in 2003. A full load and pressure test was performed using a mixture of hydrocarbon gas and condensate or water. Results from these tests are presented. A reduction in compressor performance is evident as fluid liquid content is increased. The introduction of wet gas and the use of sub sea solutions make more stringent demands for the compressor corrosion and erosion tolerance. The mechanical stress of the impeller increases when handling wet gas fluids due to an increased mass flow rate. Testing of different impeller materials and coatings has been an important part of the Statoil wet gas compressor development program. Testing of full scale (6–8 MW) sub sea integrated motor-compressors (dry gas centrifugal machines) will begin in 2008. Program sponsor is the A˚sgard Licence in the North Sea and the testing takes place at K-lab, Norway. Shallow water testing of a full scale sub sea compressor station (12.5 MW) will begin in 2010 (2 years testing planned). Program sponsor is the Ormen Lange Licence.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


2011 ◽  
pp. 19-33
Author(s):  
A. Oleinik

The article deals with the issues of political and economic power as well as their constellation on the market. The theory of public choice and the theory of public contract are confronted with an approach centered on the power triad. If structured in the power triad, interactions among states representatives, businesses with structural advantages and businesses without structural advantages allow capturing administrative rents. The political power of the ruling elites coexists with economic power of certain members of the business community. The situation in the oil and gas industry, the retail trade and the road construction and operation industry in Russia illustrates key moments in the proposed analysis.


Sign in / Sign up

Export Citation Format

Share Document