scholarly journals CFD Analysis to Understand the Flow Behaviour of a Single Stage Transonic Axial Flow Compressor

Author(s):  
M. T. Shobhavathy ◽  
Premakara Hanoca

This paper comprises the Computational Fluid Dynamic (CFD) analysis to investigate the flow behaviour of a high speed single stage transonic axial flow compressor. Steady state analyses were carried out at design and part speed conditions to obtain the overall performance map using commercial CFD software ANSYS FLUENT. Radial distribution of flow parameters were obtained at 90% of design speed for the choked flow and near stall flow conditions. The predicted data were validated against available experimental results. The end wall flow fields were studied with the help of velocity vector plots and Mach number contours at peak efficiency and near stall flow conditions at 60% and 100% design speeds. This study exhibited the nature of a transonic compressor, having strong interaction between the rotor passage shock and the tip leakage vortex at design speed, which generates a region of high blockage in the rotor blade passage. The influence of this interaction extends around15% of the blade outer span at design speed and in the absence of blade passage shock at 60% design speed, the influence of tip leakage flow observed was around 8%.

Author(s):  
Pritam Batabyal ◽  
Dilipkumar B. Alone ◽  
S. K. Maharana

This paper presents a numerical case study of various stepped tip clearances and their effect on the performance of a single stage transonic axial flow compressor, using commercially available software ANSYS FLUENT 14.0. A steady state, implicit, three dimensional, pressure based flow solver with SST k-Ω turbulence model has been selected for the numerical study. The stepped tip clearances have been compared with the baseline model of zero tip clearance at 70% and 100 % design speed. It has been observed that the compressor peak stage efficiency and maximum stage pressure ratio decreases as the tip clearances in the rear part are increased. The stall margin also increases with increase in tip clearance compared to the baseline model. An ‘optimum’ value of stepped tip clearance has been obtained giving peak stage compressor performance. The CFD results have been validated with the earlier published experimental data on the same compressor at 70% design speed.


Author(s):  
Pradyumna Kodancha ◽  
Pramod Salunkhe

Abstract Numerical investigations are carried out in a single-stage subsonic axial flow compressor to unravel the influence of blade tip surface roughness on the tip leakage flow characteristics and hence the compressor performance. The studies were carried out at different tip clearance of 0.38?, 0.77?, 1.15? and 1.54? and blade tip surface roughness of 0.31? and 0.62?. The tip clearance of 0.38? with blade tip surface roughness of 0.62? resulted in the highest stall margin and pressure rise of 20.3% and 4.3%, respectively. The compressor blade loading was found to be improved by 5.9% after incorporating the blade tip surface roughness. The iso-surfaces of vorticity contour plotted using the Q-criterion showed the reduction in strength of the tip leakage vortex. The tip leakage trajectory was found to be shifted towards the suction surface of the blade for the blade tip with surface roughness. This positive alteration in the tip leakage flow structure led to the improved performance for the blade tip with surface roughness.


2018 ◽  
Vol 5 (1) ◽  
pp. 1526458
Author(s):  
G Srinivas ◽  
K Raghunandana ◽  
Shenoy B Satish ◽  
Duc Pham

Author(s):  
Anand P. Darji ◽  
Dilipkumar Bhanudasji Alone ◽  
Chetan S. Mistry

A transonic axial flow compressor undergoes severe vibrations due to instabilities like stall and surge when it operates at lower mass flow rate in the absence of any control devices. In present study, the attempt was made to understand the combine impact of circumferential casing grooves (CCG) of constant aspect ratio and different axial spacing between rotor and stator on the operating stability of single stage transonic axial compressor and that of rotor alone using numerical simulation. The optimum rotor-stator gap in the presence of grooved casing treatment was identified. The steady state numerical analysis was performed by using three-dimensional Reynolds Average Navier-Stokes equation adapting shear stress transport (SST) k-ω turbulence model. The study is reported in two sections. First section includes the detailed numerical study on baseline case having smooth casing wall (SCW). The computational results were validated with the experimental results available at Propulsion Division of CSIR-NAL, Bangalore. The computational study shows good agreement with experimental results. The second section comprises the effects of optimum designs of CCG and various axial spacing on the stall margin improvement of transonic compressor. Current computational study shows that the axial spacing between rotor and stator is an important parameter for improvement in stall margin not only for SCW but also for CCG. Therefore, the highest stall margin improvement of 9% has achieved for 75% axial spacing.


Author(s):  
Tian Liang ◽  
Bo Liu ◽  
Stephen Spence ◽  
Liying Jiao

To extend the current understanding of the circumferential groove casing suction applied to a counter-rotating axial flow compressor, the impact of different axial locations of the circumferential suction groove on the characteristics of the tip leakage flow (TLF) and the corresponding physical mechanisms producing the stability enhancement have been studied based on validated numerical simulations. The results show that the optimal location for the suction groove is at around 20% axial chord, which demonstrated a high potential for reducing additional stall mass flow coefficient with about 8.4% increment in the stall margin. After the casing suction groove was applied, the interface between the incoming main flow and TLF was pushed significantly downstream in the second rotor. The blade loading in the region below the groove, the tip leakage flow angle and the reversed axial momentum flux injected into main flow passage through the tip gap were all reduced, which contributed to the stall margin improvement. Detailed analysis of the tip leakage flow structures showed that the TLF originating from different chord locations played different roles in the stall inception process. It was found to be more effective to improve stall margin and adiabatic efficiency by controlling the front part of the TLF, which was most sensitive.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Recirculating casing treatment (RCT) was studied in a subsonic axial flow compressor experimentally and numerically. The RCT was parameterized with the injector throat height and circumferential coverage percentage (ccp) to investigate its influence on compressor stability and on the overall performance in the experimentation. The injector throat height varied from 2 to 6 times the height of the rotor tip clearance, and the ccp ranged from 8.3% to 25% of the casing perimeter. Various RCT configurations were achieved with a modular design procedure. The rotor casing was instrumented with fast-response pressure transducers to detect the stall inception, rotational speed of stall cells, and pressure flow fields. Whole-passage unsteady simulations were also implemented for the RCT and solid casing to understand the flow details. Results indicate that both the compressor stability and overall performance can be improved through RCT with appropriate geometrical parameters. The effect of injector throat height on the stability depends on the choice of ccp, i.e., interaction effect exists. In general, the RCT with a moderate injector throat height and a large circumferential coverage is the optimal choice. Phase-locked pattern of the casing wall pressure reveals a weakened tip leakage vortex under the effect of RCT compared with the solid casing. The numerical results show that the RCT has a substantial effect on tip blockage even when the blade passages break away from the domain of RCT. The reduction of tip blockage induced by the tip leakage vortex is the main reason for the extension of stable operation range. The unsteadiness of double-leakage flow is detected both in the experiment and in numerical simulations. The pressure fluctuations caused by double-leakage flow are depressed with RCT. This observation indicates reduced losses related with the double-leakage flow. Although the stall inception is not changed by implementing RCT, the stall pattern is altered. The stall with two cells is detected in RCT compared with the solid casing with only one stall cell.


Author(s):  
Xiaochen Mao ◽  
Bo Liu ◽  
Hang Zhao

This paper presents the studies performed to better understand the effects of increased tip clearance size on the unsteady flow behaviors and overall performance under the rotor–rotor interaction environment in a counter-rotating axial flow compressor. The investigation method is based on the three-dimensional unsteady Reynolds-averaged Navier–Stokes simulations. The results show that the intensified tip leakage flow in front rotor (R1) caused by the increased tip clearance size will lead to the growth of incoming incidence angle near the tip of the rear rotor (R2). The increasing of double leakage flow range plays a significant role in the sensitivity of the efficiency to tip clearance size and its extent is enlarged gradually with the increase of tip clearance size. As the tip clearance size is increased to 1.5τ (τ represents the designed tip clearance size) from 0.5τ, the results of the fast Fourier transform for the static pressure near blade tip show that two other new fluctuating frequency components appear due to the happening of tip leakage flow self-unsteadiness in R1 and R2, respectively. Additionally, the fluctuating strength near the tip in R2 is significantly increased. However, both the overall fluctuation in R1 caused by the potential effect from downstream and the oscillation in the hub corner on the pressure side of R2 are decreased obviously. The relative inflow angle tends to increase when the incoming wakes and tip leakage flow from R1 encounter the blade leading edge of R2, which leads to the result that the trajectory of tip leakage flow is shifted more upstream.


Author(s):  
Makoto Koizumi ◽  
Motoaki Utamura ◽  
Toyohiko Yano ◽  
Susumu Nakano ◽  
Takanori Shibata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document