Aerodynamic Performance Characterization of a Drag-Based Elliptical-Bladed Savonius Wind Turbine Rotor

2021 ◽  
Author(s):  
Parag K. Talukdar ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Among the existing wind energy harvesters, the vertical-axis Savonius wind turbine rotor is found to be suitable for small-scale power generation. It is a drag-driven device where the pressure of the fluid stagnating within its blades results in its rotation. The high starting torque and poor operational efficiency of this type of turbine rotor are its distinguishing features. The main geometric and flow parameters that influence its performance are its blade profile, overlap ratio, aspect ratio and Reynolds number (Re). Among these parameters, the blade profile influences significantly on the power production. Recent studies have shown that, choice of an elliptic blade can help in harnessing more wind energy, however, it is desirable to characterize this choice through detailed studies. The present study aims at evaluating the performance of a two-elliptical-bladed Savonius turbine rotor for its dynamic torque and power characteristics. In order to characterize its performances, the developed rotor is experimented in an open circuit low speed wind tunnel. The experiments have been carried out at different Re values so as to estimate the dependence of rotor performance on Re. When the Re is increased from 57310 to 164766, the maximum power coefficient (CPmax) of the turbine rotor has shown an improvement of 43%.

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Nur Alom ◽  
Ujjwal K. Saha

The design and development of wind turbines is increasing throughout the world to offer electricity without paying much to the global warming. The Savonius wind turbine rotor, or simply the Savonius rotor, is a drag-based device that has a relatively low efficiency. A high negative torque produced by the returning blade is a major drawback of this rotor. Despite having a low efficiency, its design simplicity, low cost, easy installation, good starting ability, relatively low operating speed, and independency to wind direction are its main rewards. With the goal of improving its power coefficient (CP), a considerable amount of investigation has been reported in the past few decades, where various design modifications are made by altering the influencing parameters. Concurrently, various augmentation techniques have also been used to improve the rotor performance. Such augmenters reduce the negative torque and improve the self-starting capability while maintaining a high rotational speed of the rotor. The CP of the conventional Savonius rotors lie in the range of 0.12–0.18, however, with the use of augmenters, it can reach up to 0.52 with added design complexity. This paper attempts to give an overview of the various augmentation techniques used in Savonius rotor over the last four decades. Some of the key findings with the use of these techniques have been addressed and makes an attempt to highlight the future direction of research.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Dieniar N Ramadhani

Much human energy needs are obtained from fossil fuels. This fossil energy is decreasing day by day. So that the utilization of natural energy such as solar energy, water energy and wind energy is being developed. Wind energy is energy that we can find, so it is very easy to use by using a turbine as the driving force. The vertical axis wind turbine is a type of wind turbine that is easier to apply in places where wind potential is not too large. This research was conducted by means of simulation using Qblade v0.963 software by comparing the influence generated from several numbers of wind turbine rotor blades. From the simulation process, it is known that the wind turbine rotor blades with 4 blades are the wind turbines capable of producing the greatest power, which is 75 Watts at a low TSR. So that in the manufacturing process it does not require large costs, but it still has to be built rigid and solidly.


Author(s):  
Jelena Svorcan ◽  
◽  
Ognjen Peković ◽  
Toni Ivanov ◽  
Miloš Vorkapić ◽  
...  

With wind energy extraction constantly increasing, the interest in small-scale urban wind turbines is also expanding. Given that these machines often work in adverse operating conditions (Earth’s boundary layer, vortex trails of surrounding objects, small and changeable wind speeds), additional elements that locally augment wind velocity and facilitate turbine start may be installed. This paper investigates possible benefits of adding an optimized flow concentrator to a vertical-axis wind turbine (VAWT) rotor. Three-dimensional, unsteady, turbulent, incompressible flow simulations of both isolated rotor consisting of three straight blades and a rotor with flow concentrator have been performed in ANSYS FLUENT by finite volume method for several different operational regimes. This type of flow simulations is challenging since flow angles are high, numerous flow phenomena and instabilities are present and the interaction between the blades and detached vortices can be significant. The rotational motion of the blades is solved by the unsteady Sliding Mesh (SM) approach. Flow field is modeled by Unsteady Reynolds Averaged Navier-Stokes (URANS) equations with k-ω SST turbulence model used for closure. Both quantitative and qualitative examinations of the obtained numerical results are presented. In particular, the two computed power coefficient curves are compared and the advantages of installing a flow concentrator are accentuated.


Author(s):  
Paul Schünemann ◽  
Timo Zwisele ◽  
Frank Adam ◽  
Uwe Ritschel

Floating wind turbine systems will play an important role for a sustainable energy supply in the future. The dynamic behavior of such systems is governed by strong couplings of aerodynamic, structural mechanic and hydrodynamic effects. To examine these effects scaled tank tests are an inevitable part of the design process of floating wind turbine systems. Normally Froude scaling is used in tank tests. However, using Froude scaling also for the wind turbine rotor will lead to wrong aerodynamic loads compared to the full-scale turbine. Therefore the paper provides a detailed description of designing a modified scaled rotor blade mitigating this problem. Thereby a focus is set on preserving the tip speed ratio of the full scale turbine, keeping the thrust force behavior of the full scale rotor also in model scale and additionally maintaining the power coefficient between full scale and model scale. This is achieved by completely redesigning the original blade using a different airfoil. All steps of this redesign process are explained using the example of the generic DOWEC 6MW wind turbine. Calculations of aerodynamic coefficients are done with the software tools XFoil and AirfoilPrep and the resulting thrust and power coefficients are obtained by running several simulations with the software AeroDyn.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1870 ◽  
Author(s):  
Lidong Zhang ◽  
Kaiqi Zhu ◽  
Junwei Zhong ◽  
Ling Zhang ◽  
Tieliu Jiang ◽  
...  

The central shaft is an important and indispensable part of a small scale urban vertical axis wind turbines (VAWTs). Normally, it is often operated at the same angular velocity as the wind turbine. The shedding vortices released by the rotating shaft have a negative effect on the blades passing the wake of the wind shaft. The objective of this study is to explore the influence of the wake of rotating shaft on the performance of the VAWT under different operational and physical parameters. The results show that when the ratio of the shaft diameter to the wind turbine diameter (α) is 9%, the power loss of the wind turbine in one revolution increases from 0% to 25% relative to that of no-shaft wind turbine (this is a numerical experiment for which the shaft of the VAWT is removed in order to study the interactions between the shaft and blade). When the downstream blades pass through the wake of the shaft, the pressure gradient of the suction side and pressure side is changed, and an adverse effect is also exerted on the lift generation in the blades. In addition, α = 5% is a critical value for the rotating shaft wind turbine (the lift-drag ratio trend of the shaft changes differently). In order to figure out the impacts of four factors; namely, tip speed ratios (TSRs), α, turbulence intensity (TI), and the relative surface roughness value (ks/ds) on the performance of a VAWT system, the Taguchi method is employed in this study. The influence strength order of these factors is featured by TSRs > ks/ds > α > TI. Furthermore, within the range we have analyzed in this study, the optimal power coefficient (Cp) occurred under the condition of TSR = 4, α = 5%, ks/ds = 1 × 10−2, and TI = 8%.


Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
A. Gallegos-Mun˜oz ◽  
J. Manuel Riesco A´vila

A numerical analysis of a rooftop vertical axis wind turbine (VAWT) for applications in urban area is presented. The numerical simulations were developed to study the flow field through the turbine rotor to analyze the aerodynamic performance characteristics of the device. Three different blade numbers of wind turbine are studied, 2, 3 and 4, respectively. Each one of the models was built in a 3D computational model. The effects generated in the performance of turbines by the numbers of blades are considered. A Sliding Mesh Model (SMM) capability was used to present the dimensionless form of coefficient power and coefficient moment of the wind turbine as a function of the wind velocity and the rotor rotational speed. The numerical study was developed in CFD using FLUENT®. The results show the aerodynamic performance for each configuration of wind turbine rotor. In the cases of Rooftop rotor the power coefficient increases as the blade number increases, while in the case of Savonius rotor the power coefficient decrease as the blades number increases.


Sign in / Sign up

Export Citation Format

Share Document