Performance Assessment of a Small-Scale Vertical Axis Single-Stage Savonius Wind Turbine by using Artificial Wind

Author(s):  
Wanas Uddin Ahmed ◽  
Mohammad Rejwan Uddin ◽  
Quazi Taif Sadat ◽  
Palash Das ◽  
Mahady Hasan
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kaprawi Sahim ◽  
Dyos Santoso ◽  
Dewi Puspitasari

Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.


Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Jeffery Lewis ◽  
Mark Fuller

With the growing demand of energy worldwide, conventional energy is becoming more and more scarce and expensive. The United States is already facing an energy crunch as the fuel price soars. Therefore, there is an obvious need for alternative sources of energy—perhaps more than ever. Wind is among the most popular and fastest-growing forms of electricity generation in the world, which is pollution free and available almost at any time of the day, especially in the coastal regions. The main attraction of the vertical-axis wind turbine is its manufacturing simplicity compared to that of the horizontal-axis wind turbine. Among all different vertical axis wind turbines, Savonius wind turbine is the simplest one. Operation of the Savonius wind turbine is based on the difference of the drag force on its semi-spherical blades, depending on whether the wind is striking the convex or the concave part of the blades. The advantage of this type of wind turbine is its good self-starting and wind directional independence characteristic. It, however, has a relatively lower efficiency in comparison with the lift type vertical-axis wind turbines. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and wind power on a small scale. The main objective of this ongoing research work is to improve the aerodynamic performance of vertical axis Savonius wind turbine. Wind tunnel investigation has been performed on aerodynamic characteristics, such as drag coefficients, and static torque coefficient of three-bladed Savonius rotor model. Also the computational fluid dynamics (CFD) simulation has been performed using FLUENT software to analyze the static rotor aerodynamics such as drag coefficients and torque coefficient, and these results are compared with the corresponding experimental results for verification.


Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Ahsan Mian

Considerable improvements in the aerodynamic performance of a vertical axis wind turbine (VAWT) can be achieved by integrating computational fluid dynamics (CFD) simulation and wind tunnel investigation in their design improvement. With the growing demand for energy worldwide, conventional sources are becoming more scarce and expensive. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. Industry experts predict that, with proper development, wind energy could provide 20% of the nation’s energy needs. Vertical axis wind turbines (VAWTs) may be as efficient and practical as, and simpler, and significantly cheaper to build and maintain than, horizontal axis wind turbines (HAWTs). They have other inherent advantages; for example, they always face the wind. VAWTs include both a drag-type configuration, such as the Savonius rotor, and a lift-type configuration, such as the Darrieus rotor. The Savonius wind turbine is the simplest. Its operation depends on the difference in drag force when the wind strikes either the convex or concave part of its semi-cylindrical blades. It is good at self-starting and works independently of wind direction. However, its efficiency is relatively lower than that of the lift-type VAWTs. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and to generate wind power on a small scale and its large starting torque makes it suitable for starting other types of wind turbines that have inferior starting characteristics. Recently, some generators with high torque at low rotational speed, suitable for small-scale wind turbines, have been developed, suggesting that Savonius rotors may yet be used to generate electric power. The main goal of this research work is to improve the aerodynamic performance of the three bladed vertical axis Savonius wind turbine. Based on this goal, the objective of this project is to study the performance characteristics of the Savonius wind turbine scale models both experimentally and numerically. The turbine scale models will have different designs with different overlap ratios (ratio of gap between two adjacent blades and the rotor diameter) and without overlap within three blades. The experimental measurements and testing will be conducted in front of a low speed subsonic wind tunnel at different Reynolds number and the computational fluid dynamic (CFD) flow simulation around those design models will be performed by commercial CFD software FLUENT and GAMBIT.


2021 ◽  
Author(s):  
Parag K. Talukdar ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Among the existing wind energy harvesters, the vertical-axis Savonius wind turbine rotor is found to be suitable for small-scale power generation. It is a drag-driven device where the pressure of the fluid stagnating within its blades results in its rotation. The high starting torque and poor operational efficiency of this type of turbine rotor are its distinguishing features. The main geometric and flow parameters that influence its performance are its blade profile, overlap ratio, aspect ratio and Reynolds number (Re). Among these parameters, the blade profile influences significantly on the power production. Recent studies have shown that, choice of an elliptic blade can help in harnessing more wind energy, however, it is desirable to characterize this choice through detailed studies. The present study aims at evaluating the performance of a two-elliptical-bladed Savonius turbine rotor for its dynamic torque and power characteristics. In order to characterize its performances, the developed rotor is experimented in an open circuit low speed wind tunnel. The experiments have been carried out at different Re values so as to estimate the dependence of rotor performance on Re. When the Re is increased from 57310 to 164766, the maximum power coefficient (CPmax) of the turbine rotor has shown an improvement of 43%.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


2020 ◽  
Vol 1706 ◽  
pp. 012215
Author(s):  
Chandrakant R Sonawane ◽  
Rohan Sawant ◽  
Kishan Patel ◽  
Rohan Sonawala ◽  
Aditya Pawar ◽  
...  

2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Sign in / Sign up

Export Citation Format

Share Document