Experimental Investigation of Heat Transfer Characteristics of Inkjet Assisted Spray Cooling

Volume 3 ◽  
2004 ◽  
Author(s):  
Ratnesh K. Sharma ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

Increases in microprocessor power density along with an accompanying spatial variation in power density has been well documented in recent years. These combined factors pose a severe challenge for the provisioning of cooling resources at the microprocessor level. The use of thermal inkjet technology to precisely supply coolant onto the surface of a microprocessor has the potential to address this problem in a chip-scale form factor. By providing coolant when and where it is needed on the surface of a chip or package, very high critical heat fluxes can be obtained in an energy efficient manner in a minimum of physical space. In this paper, the unique heat transfer characteristics of inkjet assisted spray cooling of a heated surface are investigated. Sprays of water are used to cool heated surfaces ranging from 281mm2 to 35mm2. Several experiments are conducted at different nozzle-to-surface distances to measure critical heat flux (CHF) at different flow rates and firing frequencies. The impact of volumetric flux variation on CHF is studied. CHF data, measured over broad range of operating conditions is correlated to volumetric flux and liquid properties. Flow visualization studies are also conducted to understand the vapor-liquid interaction at the heater surface and the intermediate region. Jet breakup length studies are carried out to understand the propagation of Rayleigh instabilities in the spray jets and, subsequent, formation of liquid drops. CHF data combined with fluid flow studies have been used to optimize the nozzle-to-surface clearance. Results obtained from these experiments are invaluable for the design of micro scale spray cooling devices for chips.

Author(s):  
Ganesh Guggilla ◽  
Arvind Pattamatta ◽  
Ramesh Narayanaswamy

Abstract Due to the advancements in computing services such as machine learning and artificial intelligence, high-performance computing systems are needed. Consequently, the increase in electron chip density results in high heat fluxes and required sufficient thermal management to maintain the servers. In recent times, the liquid cooling techniques become prominent over air cooling as it has significant advantages. Spray cooling is one such efficient cooling process which can be implemented in electronics cooling. To enhance the knowledge of the process, detailed studies of fundamental mechanisms involved in spray cooling such as single droplet and multiple droplet interactions are required. The present work focuses on the study of a train of droplets impinging over a heated surface using FC-72 liquid. The surface temperature is chosen as a parameter, and the Dynamic Leidenfrost point (DLP) for the present impact conditions is identified. Spread hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature, are studied and compared.


2021 ◽  
Author(s):  
Ganesh Guggilla ◽  
Ramesh Narayanaswamy ◽  
Peter Stephan ◽  
Arvind Pattamatta

Abstract High-performance computing systems are needed in advanced computing services such as machine learning and artificial intelligence. Consequently, the increase in electron chip density results in high heat fluxes and requires good thermal management to maintain the servers. Spray cooling using liquid offers higher heat transfer rates and is efficient when implemented in electronics cooling. Detailed studies of fundamental mechanisms involved in spray cooling, such as single droplet and multiple droplet interactions, are required to enhance the process's knowledge. The present work focuses on studying a train of two FC-72 droplets impinging over a heated surface. Experimental investigation using high-speed photography and infrared thermography is conducted. Simultaneously, numerical simulations using opensource CFD package, OpenFOAM are carried out, emphasizing the significance of contact angle hysteresis. The surface temperature is chosen as a parameter, and different boiling regimes along with Dynamic Leidenfrost point (DLP) for the present impact conditions are identified. Spreading hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature, are studied and compared.


Author(s):  
Eelco Gehring ◽  
Mario F. Trujillo

A primary mechanism of heat transfer in spray cooling is the impingement of numerous droplets onto a heated surface. This mechanism is isolated in the present and ongoing work by numerically simulating the impact of a single train of FC-72 droplets employing an implicit free surface capturing methodology. The droplet frequency and velocity ranges from 2000–4000 Hz, and 0.5–2 m/s, respectively, with a fixed drop size of 239 μm. This gives a corresponding Weber and Reynolds range of 10–170 and 330–1300, respectively. Results show that the impingement zone is largely free of phase change effects due to the efficient suppression of the local temperature field well below the saturated value. Due in part to the relatively high value of the Prandtl number and the compression of the boundary layer from the impingement flow, a cell size on the order of 1 μm is necessary to adequately capture the heat transfer dynamics. It is shown that the cooling behavior increases in relation to increasing frequency and impact velocity, but is most sensitive to velocity. In fact, for sufficiently low velocities the calculations show that the momentum imparted on the film is insufficient to maintain a near stationary liquid crown. The consequence is a noticeable penalty on the cooling behavior.


Sign in / Sign up

Export Citation Format

Share Document