Design of Air and Liquid Cooling Systems for Electronic Components Using Concurrent Simulation and Experiment

Volume 4 ◽  
2004 ◽  
Author(s):  
T. Icoz ◽  
N. Verma ◽  
Y. Jaluria

The design of cooling systems for electronic equipment is getting more involved and challenging due to increase in demand for faster and more reliable electronic systems. Therefore, robust and more efficient design and optimization methodologies are required. Conventional approaches are based on sequential use of numerical simulation and experiment. Thus, they fail to use certain advantages of using both tools concurrently. The present study is aimed at combining simulation and experiment in a concurrent manner such that outputs of each approach drives the other to achieve better engineering design in a more efficient way. In this study, a relatively simple problem involving heat transfer from multiple heat sources, simulating electronic components, located in a horizontal channel was investigated experimentally and numerically. Two experimental setups were fabricated for air and liquid cooling experiments to study the effects of different coolants. De-ionized water was used as the liquid coolant in one case and air in the other. The effects of separation distance and flow conditions on the heat transfer and fluid flow characteristics were investigated in details for both coolants. Cooling capabilities of different cooling arrangements were compared and the results from simulations and experiments were combined to provide quantitative inputs for the design. The domains over which experimental or the numerical approach is superior to the other are determined. Simulations are used to guide the experiments and vice versa. It is found that the proposed optimization methodology can be implemented in the design of cooling systems for electronic components for faster and more efficient convergence. This methodology can also be extended to more complex and practical electronic systems.

2006 ◽  
Vol 128 (4) ◽  
pp. 466-478 ◽  
Author(s):  
Tunc Icoz ◽  
Nitin Verma ◽  
Yogesh Jaluria

The design of cooling systems for electronic equipment is getting more involved and challenging due to increase in demand for faster and more reliable electronic systems. Therefore, robust and more efficient design and optimization methodologies are required. Conventional approaches are based on sequential use of numerical simulation and experiment. Thus, they fail to use certain advantages of using both tools concurrently. The present study is aimed at combining simulation and experiment in a concurrent manner such that outputs of each approach drive the other to achieve better engineering design in a more efficient way. In this study, a relatively simple problem, involving heat transfer from multiple heat sources simulating electronic components and located in a horizontal channel, was investigated. Two experimental setups were fabricated for air and liquid cooling experiments to study the effects of different coolants. De-ionized water was used as the liquid coolant in one case and air in the other. The effects of separation distance and flow conditions on the heat transfer and on the fluid flow characteristics were investigated in detail for both coolants. Cooling capabilities of different cooling arrangements were compared and the results from simulations and experiments were combined to create response surfaces and to find the optimal values of the design parameters.


2006 ◽  
Vol 128 (10) ◽  
pp. 1081-1092 ◽  
Author(s):  
Tunc Icoz ◽  
Yogesh Jaluria

Thermal management of electronic equipment is one of the major technical problems in the development of electronic systems that would meet increasing future demands for speed and reliability. It is necessary to design cooling systems for removing the heat dissipated by the electronic components efficiently and with minimal cost. Vortex promoters have important implications in cooling systems for electronic devices, since these are used to enhance heat transfer from the heating elements. In this paper, an application of dynamic data driven optimization methodology, which employs concurrent use of simulation and experiment, is presented for the design of the vortex promoter to maximize the heat removal rate from multiple protruding heat sources located in a channel, while keeping the pressure drop within reasonable limits. Concurrent use of computer simulation and experiment in real time is shown to be an effective tool for efficient engineering design and optimization. Numerical simulation can effectively be used for low flow rates and low heat inputs. However, with transition to oscillatory and turbulent flows at large values of these quantities, the problem becomes more involved and computational cost increases dramatically. Under these circumstances, experimental systems are used to determine the component temperatures for varying heat input and flow conditions. The design variables are taken as the Reynolds number and the shape and size of the vortex promoter. The problem is a multiobjective design optimization problem, where the objectives are maximizing the total heat transfer rate Q and minimizing the pressure drop ΔP. This multiobjective problem is converted to a single-objective problem by combining the two objective functions in the form of weighted sums.


Author(s):  
Tunc Icoz ◽  
Yogesh Jaluria

Thermal management of electronic equipment is one of the major technical problems in the development of electronic systems that would meet increasing future demands for speed and reliability. It is necessary to design cooling systems for removing the heat dissipated by the electronic components efficiently and with minimal cost. Vortex promoters have important implications in cooling systems for electronic devices, since these are used to enhance heat transfer from the heating elements. In this paper, an application of Dynamic Data Driven Optimization Methodology (DDDOM), which employs concurrent use of simulation and experiment, is presented for the design of the vortex promoter to maximize the heat removal rate from multiple protruding heat sources located in a channel, while keeping the pressure drop within reasonable limits. Concurrent use of computer simulation and experiment in real time is shown to be an effective tool for efficient engineering design and optimization. Numerical simulation can effectively be used for low flow rates and low heat inputs. However, with transition to oscillatory and turbulent flow at large values of these quantities, the problem becomes more involved and computational cost increases dramatically. Under these circumstances, experimental systems are used to determine the component temperatures for varying heat input and flow conditions. The design variables are taken as the Reynolds number and the shape and size of the vortex promoter. The problem is a multi-objective design optimization problem, where the objectives are maximizing the total heat transfer rate, as given by the Nusselt number, Nu, and minimizing the pressure drop, ΔP. This multi–objective problem is converted to a single-objective problem by combining the two objective functions of the form Nutota/ΔPb, where a and b are constants.


2013 ◽  
Vol 597 ◽  
pp. 3-8
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida ◽  
Slawomir Smolen ◽  
Touria Mediouni

Natural convection in inclined cubic cavity, discretely heated, is studied numerically using a three-dimensional finite volume formulation. Two heating square portions are placed on the vertical wall of the enclosure, while the rest of the considered wall is adiabatic. These sections, similar to the integrated electronic components, generate a heat flux q". The opposite vertical wall is maintained at a cold uniform temperature Tc and the other walls are adiabatic. The fluid flow and heat transfer in the cavity are studied for different sets of the governing parameters, namely the Rayleigh number Ra (103 ≤ Ra ≤ 107), the cavity inclination γ (- 45° ≤ γ ≤ 45°) and the position of the heating sections λ (0.3 ≤ λ ≤ 0.7). The dimensions of the heater sections, ε = D / H and the longitudinal aspect ratio of the cavity Ax = H / L are respectively fixed to 0.35 and 1.


2004 ◽  
Vol 126 (6) ◽  
pp. 1044-1047 ◽  
Author(s):  
Yongmann M. Chung ◽  
Paul G. Tucker

Numerical studies of unsteady heat transfer in grooved channel flows are made. The flows are of special relevance to electronic systems. Predictions suggest a commonly used periodic flow assumption (for modeling rows of similar electronic components) may not be valid over a significant system extent. It is found that the downstream flow development is strongly dependent on geometry.


2021 ◽  
Author(s):  
◽  
Benjamin Sherson

<p>Closed-loop liquid cooling systems are used in a wide variety of high temperature environments, as liquids tend a higher thermal conductivity than air. Microchannels and porous microstructures have proved to be useful in improving the cooling capabilities of cooling systems, due to their increased surface area in contact with the cooling fluid. This thesis describes the design, development, and evaluation of a closed-loop liquid cooling test system. This system was utilised in analysing the thermal properties of porous microstructures for use in improving cooling capabilities. Flow rate and pressure sensors were fitted onto a standard closed loop liquid cooling system design, and thermocouples were attached to the system to measure the temperature at various points, as well as measure heat flux. Using these measurements, the thermal and hydraulic resistances of the system could be calculated. Various substrates were fabricated using both freeze casting and other techniques, and the thermal and hydraulic resistances of these substrates were characterized using the test system. The test system performed very well, with results matching the trends as expected from theory. However, no improvement in heat transfer was observed from microstructured silver surfaces compared to a solid copper reference surface. This may be due to the formation of oxides and/or sulphides on these silver surfaces, resulting in a reduction in the convective heat transfer from these layers.</p>


2021 ◽  
Author(s):  
◽  
Benjamin Sherson

<p>Closed-loop liquid cooling systems are used in a wide variety of high temperature environments, as liquids tend a higher thermal conductivity than air. Microchannels and porous microstructures have proved to be useful in improving the cooling capabilities of cooling systems, due to their increased surface area in contact with the cooling fluid. This thesis describes the design, development, and evaluation of a closed-loop liquid cooling test system. This system was utilised in analysing the thermal properties of porous microstructures for use in improving cooling capabilities. Flow rate and pressure sensors were fitted onto a standard closed loop liquid cooling system design, and thermocouples were attached to the system to measure the temperature at various points, as well as measure heat flux. Using these measurements, the thermal and hydraulic resistances of the system could be calculated. Various substrates were fabricated using both freeze casting and other techniques, and the thermal and hydraulic resistances of these substrates were characterized using the test system. The test system performed very well, with results matching the trends as expected from theory. However, no improvement in heat transfer was observed from microstructured silver surfaces compared to a solid copper reference surface. This may be due to the formation of oxides and/or sulphides on these silver surfaces, resulting in a reduction in the convective heat transfer from these layers.</p>


Author(s):  
Kuen Tae Park ◽  
Byeongdong Kang ◽  
Hyun Jung Kim ◽  
Dong-Kwon Kim

Advances in semiconductor technology and trends in slim and light electronic systems have led to a significant increase in heat dissipation density of the electronic devices. Therefore, effective cooling technology is essential for reliable operation of electronic components. Among various cooling systems, natural convection heat sinks have been proven to be appropriate because of their inherent simplicity, reliability, and low long-term cost. The present study is focused on natural convective heat transfer from the cylindrical heat sink. Especially, the branched fins, which are motivated by the branched design of nature shown in trees and lungs, are used. The heating power and surface temperature are measured for various types of branched fins and numbers of fins. The result showed that the branched fin dissipates 20% more heat compared to the normal plate fins. Therefore, heat sinks with branched fins have a potential as a next-generation cooling device.


Author(s):  
José Luis Garcia-Flores ◽  
Julio Valle-Hernandez ◽  
José Manuel Gallardo-Villareal ◽  
Jorge Guillermo Alonso-Alfaro

In the last decade one of the main opportunity areas of the cooler systems is increase their efficiency; for this, it has been innovating in materials and working fluids mainly. In the last decade one of the main areas of opportunity in refrigeration systems is the reference to increase their efficiency. For this, it has been innovating in materials and fluids of work mainly. In this work, the analysis of the transfer of calories in liquid cooling systems is analyzed by adding nanoparticles. These systems have different industrial and refrigeration applications in electronic systems. In the present work a configuration of the refrigeration system to be used is proposed. The analysis consists of the mathematical mode from the design of the geometry and the trajectory of the flow in the pipeline, in addition to a simulation in Computational Fluid Dynamics (CFD) of the system. The conditions are presented in the results.


Sign in / Sign up

Export Citation Format

Share Document