scholarly journals Transmittance and Radiance Computations for Rocket Engine Plume Environments

2003 ◽  
Author(s):  
Gopal D. Tejwani

Rocket engine exhaust plume is generally thermal in character arising from changes in the internal energy of constituent molecules. Radiation from the plume is attenuated in its passage through the atmosphere. In the visible and the infrared region of the spectrum for clear-sky conditions, this is caused mainly through absorption by atmospheric molecular species. The most important combustion-product molecules giving rise to emission in the IR are water vapor, carbon dioxide, and carbon monoxide. In addition, the high temperature plume reacting with the surrounding atmosphere may produce nitrogen oxides, in the boundary layer, all of which are strongly emitting molecules. Important absorbing species in the atmosphere in the engine plume environment are H2O, CO, CO2, CH4, N2O, NO, and NO2. Under normal atmospheric conditions, the concentrations of O3, SO2, and NH3 are too small to produce any significant absorption. Essentially the problem comprises of the propagation of radiation from a hot gas source through a long cool absorbing atmosphere thus combining aspects of atmospheric and combustion gas methods. Since many of the same molecular species are responsible for both emission and absorption, the high degree of line position correlation between the emission and absorption spectra precludes the decoupling of the optical path into isolated emitter and absorber regions and multiplying the source band radiance by the absorber band transmittance in order to arrive at the transmitted radiance spectrum. Also, very strong thermal gradients may be encountered. All this suggests that a layer-by-layer computation is called for. The pathlength through the plume and the atmosphere is assumed to go through a certain number of layers, each of which is considered to have all molecular species in local thermodynamic equilibrium at constant temperature and pressure within the layer. Radiative transfer problems can be visualized as a set of parallel layers orthogonal to the line of sight, each with an input radiance from the previous layer and an output radiance to the subsequent layer. The MODTRAN (MODerate resolution TRANsmission) code is ideally suited for layer-by-layer absorption/emission calculations for atmospheric molecular species. We have utilized MODTRAN 4.0 computer code, implemented on a Power Mac G3, for the radiance and transmittance computations. The MODTRAN code has been adapted for the engine plume radiance computations. If the plume composition and flowfield parameters such as the temperature and pressure values are known along the line of sight by means of the experimental measurements or (more likely) CFD simulations, one can compute the radiance from any plume with high degree of accuracy at any desired point in space. Emission and absorption characteristics of several atmospheric and combustion species have been studied and presented in this paper with reference to the rocket engine plume environments at the Stennis Space Center. In general transmittance losses can not be neglected for any pathlength of 2 m or more. We have also studied the effect of clouds, rain, and fog on the plume radiance/transmittance. The transmittance losses are severe if any of these occur along the line of sight. Preliminary results for the radiance from the exhaust plume of the space shuttle main engine are shown and discussed.

2001 ◽  
Vol 105 (1048) ◽  
pp. 315-322 ◽  
Author(s):  
A. Ray ◽  
M. S. Holmes ◽  
C. F. Lorenzo

Abstract The goal of life extending control (LEC) is to enhance structural durability of complex mechanical systems, such as aircraft, spacecraft, and energy conversion devices, without incurring any significant loss of performance. This paper presents a concept of robust life-extending controller design for reusable rocket engines, similar to the Space Shuttle Main Engine (SSME), via damage mitigation in both fuel and oxidiser turbines while achieving the required performance for transient responses of the main combustion chamber pressure and the oxidant/fuel mixture ratio. The design procedure makes use of a combination of linear robust control synthesis and nonlinear optimisation techniques. Results of simulation experiments on the model of a reusable rocket engine are presented to this effect.


1993 ◽  
Author(s):  
Wayne J. Bordelon ◽  
William J. Kauffman ◽  
John P. Heaman

Performance evaluations of rocket engine turbopump drive turbines are difficult to obtain from turbopump or engine firings due to measurement limitations and operating point restrictions. The Marshall Space Flight Center (MSFC) Turbine Test Equipment (TTE) was developed to provide an accurate, economical method of measuring the performance of full-scale turbopump gas turbines. By expanding air at pressures as high as 435 psia (3.0 MPa) to atmospheric conditions, the TTE provides metered air at nominal conditions of 100 psia (0.69 MPa), 550 °R (350 °K), and 15 lbm/sec (6.8 kg/sec) with run times of 100 seconds or greater. A 600 hp (448 kW) direct current dynamometer and gearbox provide turbine power absorption for speeds up to 14,000 rpm. This paper describes the MSFC TTE and its performance including the performance envelope, turbine inlet flow quality, and measurement uncertainty.


Author(s):  
Stephen W. Gaddis ◽  
Susan T. Hudson ◽  
P. Dean Johnson

The National Aeronautics and Space Administration’s (NASA’s) Marshall Space Flight Center (MSFC) has established a “cold” airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the space shuttle main engine (SSME) alternate turbopump development (ATD) fuel turbine was conducted for “back-to-back” comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.


2019 ◽  
Vol 1151 ◽  
pp. 3-7 ◽  
Author(s):  
Eleonora Santecchia ◽  
Paolo Mengucci ◽  
Andrea Gatto ◽  
Elena Bassoli ◽  
Lucia Denti ◽  
...  

Powder bed fusion (PBF) is an additive manufacturing technique, which allows to build complex functional mechanical parts layer-by-layer, starting from a computer-aided design (CAD) model. PBF is particularly attractive for biomedical applications, where a high degree of individualization is required. In this work, the microstructure of two biomedical alloys, namely Co-Cr-Mo and Ti-6Al-4V, were studied by X-ray diffraction and electron microscopy techniques. Hardness and tensile tests were performed on the sintered parts.


Author(s):  
Michael Steppert ◽  
Philipp Epple ◽  
Michael Steber

The historical HW2 rocket was a liquid propulsion rocket, designed by the German rocket pioneer Johannes Winkler in 1932. With this rocket, Winkler tried to reach a much higher altitude than with his first model, the HW1, which was the first liquid propulsion rocket in Europe and reached an altitude of 60 meters. Because of technical problems, the HW2 exploded immediately after the launch on October 6th in 1932 [1] [2]. To estimate the performance of this historical liquid propulsion rocket its maximum flight altitude was computed with the use of CFD. The equation of the vertical flight trajectory was solved numerically, with the classical Runge-Kutta method. For the computation of the vertical trajectory standard atmospheric conditions were considered. To determine the thrust and the drag of the rocket, the Navier-Stokes equations were solved with the commercial CFD solver Star-CCM+ from Siemens PLM Software. The rocket hull and the rocket engine were first simulated independently for different Mach-numbers and atmospheric flight conditions. Finally the complete rocket with running rocket engine was also computed in atmospheric flight conditions. These results were compared with the standalone simulations of the rocket drag without the running rocket engine and with the simulation of the rocket engine alone. The results are shown and analyzed in detail in this work.


Sign in / Sign up

Export Citation Format

Share Document