The Effects of Inlet Flow Conditions on Gas-Liquid Two-Phase Flow in a Micro Tube

Author(s):  
Shota Hayashi ◽  
Nobuhide Kasagi ◽  
Yuji Suzuki

In the present study, the effects of inlet geometry on the microscale two-phase flow patterns have been examined. The relationships among the flow pattern, the void fraction, the pressure loss and the heat transfer coefficient have been also investigated under different inlet flow conditions. At the inlet, a stainless steel tube is inserted into the micro glass tube, of which inner diameter is 300 and 600 μm. The gas and liquid paths and the diameter of the inner tube are interchangeable. The flow patterns are recorded at the inlet and also in the developed region in the micro tubes. The flow patterns observed in the 600 μm tube are bubbly, slug, churn and annular flows, while bubbly and churn flows are not present in the 300 μm tube. For bubbly and slug flows, bubble formation process is found to be strongly affected by the inlet conditions. Accordingly, the pressure loss as well as the heat transfer rate are changed. In addition, the bubble size is not uniquely determined; bubbles of different sizes are observed in repeated experiments under the same inlet flow conditions. On the other hand, for churn and annular flows, the flow patterns are not affected by the inlet conditions.

Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


2017 ◽  
Vol 117 ◽  
pp. 544-552 ◽  
Author(s):  
Yonghai Gao ◽  
Yanchun Cui ◽  
Boyue Xu ◽  
Baojiang Sun ◽  
Xinxin Zhao ◽  
...  

Author(s):  
S. Alireza Hojati ◽  
Pedram Hanafizadeh

The flow patterns in two phase and multi-phase flows is a significant factor which influences many other parameters such as drag force, drag coefficient and pressure drop in pipe lines. One of the major streams in the gas and oil industries is oil-water two phase flow. The main flow patterns in oil-water flows are bubbly, slug, dual continuous, stratified and annular. In the present work flow patterns in two phase oil-water flow were investigated in a 0.5in diameter pipe with length of 2m. 3D simulation was used for this pipe and six types of mesh grid were used to investigate mesh independency of the simulation. The proposed numerical analyses were performed by a CFD package which is based both on volume of fluid (VOF) and Eulerian-Eulerian methods. The results showed that some flow patterns can be simulated better with VOF method and some other maybe in Eulerian-Eulerian method, so these two methods were compared with together for all flow patterns. The flow patterns may be a function of many parameters in flow. One of the important parameter which may affect flow patterns in pipe line is pipe inclination angle; therefore flow patterns in the different pipe inclination angles were investigated in two phase oil-water flow. The range of inclinations has been varied between −45 to +45 degree about the horizon. In the presented simulation oil is mixed with water via a circular hole at center of the pipe, the ratio of oil surface to water surface at entrance is 2/3 so water phase was considered as the main phase. Flow patterns were investigated for every angle of pipe and numerical results were compared with available experimental data for verification. Also the flow patterns simulated by numerical approaches were compared with available flow regime maps in the previous literatures. Finally, effect of pipe inclination angle and flow patterns on the pressure loss were investigated comprehensively.


Author(s):  
Jostein Pettersen

Carbon dioxide (CO2 / R-744) is receiving renewed interest as a refrigerant, in many cases based on systems with microchannel heat exchangers that have high pressure capability, efficient heat transfer, and compact design. A good understanding of two-phase flow of evaporating CO2 in microchannels is needed to analyze and predict heat transfer. A special test rig was built in order to observe two-phase flow patterns, using a horizontal quartz glass tube with ID 0.98 mm, externally coated by a transparent resistive film. Heat flux was obtained by applying DC power to the film, and flow patterns were recorded at 4000 or 8000 frames per second by a digital video camera. Flow patterns were recorded for temperatures 20°C and 0°C, and for mass flux ranging from 100 to 580 kgm−2s−1. The observations showed a dominance of intermittent (slug) flow at low x, and wavy annular flow with entrainment of droplets at higher x. At high mass flux, the annular/entrained flow pattern could be described as dispersed. The aggravated dryout problem reported from heat transfer experiments at high mass flux could be explained by increased entrainment. Stratified flow was not observed in the tests with heat load. Bubble formation and growth could be observed in the liquid film, and the presence of bubbles gave differences in flow pattern compared to adiabatic flow. The flow pattern observations did not fit generalized maps or transition lines showed in the literature.


2002 ◽  
Vol 11 (4) ◽  
pp. 353-358 ◽  
Author(s):  
A. Mosyak ◽  
Z. Segal ◽  
E. Pogrebnyak ◽  
G. Hetsroni

Author(s):  
Alberto Serena ◽  
Lars E. Bakken

The flow inside of turbomachines rotating channels, when operating away from the design point, is intrinsically unsteady; two-phase flow and part-load operation further complicate the analysis, introducing additional challenges. Transient phenomena, linked to the typical unsteadiness of multiphase flows (bubble formation, coalescence or breakdown, segregation and gas locking) and to variable inlet flow compositions, as in case of slug flow, require advanced analysis tools which can reveal the local flow mechanisms responsible for performance degradation and instabilities. General trends can be outlined, but the air accumulation zones and two-phase flow patterns are highly dependent on the machine design. The flow regimes vary from a homogeneous distribution of fine bubbles, evenly dispersed and carried away by the main flow, to more complex flow patterns, especially when the phases separate or the bubbles coalesce forming a gas pocket which adheres to a wide portion of the channel wall. Tests are performed on a multiphase pump laboratory, recently installed at the Norwegian University of Science and Technology, which allows a complete optical access to the pump channels and fine adjustments in the inlet configuration and the tip clearance gap; the air can be injected from different locations producing transient regimes too. A high speed camera provides an interesting insight into the transient flow phenomena. This paper focuses on these specific ones: - Irregular backflow and swirl at the inlet section - Gas accumulation zones and contribution of the tip leakage to mixing - Flow pattern shift to phase segregation, as the relative flow is reduced - Origin of pump blockage, when increasing gas contents cannot be carried away by the water phase - Flow and machine parameters response to a variation in the inlet flow Tests are performed at various operating conditions — rotational speed, mixture composition and impeller tip clearance. The study is completed with the time and frequency domain analysis of the pressure pulsations at surging and during specific transient events.


Author(s):  
S. Zeguai ◽  
S. Chikh ◽  
O. Rahli ◽  
L. Tadrist

An experimental apparatus is setup to analyze a co-current air-water two phase flow in a 3 mm inner diameter tube with horizontal and vertical orientations. Air is axially injected through a nozzle of 260 μm of inner diameter. Air and water flow rates are accurately controlled at the inlet, covering a range of apparent velocities JL = 0.00118 to 0.0786 m/s, JG = 0.002 to 3.538 m/s for the horizontal tube and JL = 0.00078 to 0.0589 m/s, JG = 0.003 to 3.538 m/s for the upward flow. A fast camera with 250 fps is utilized to visualize the flow patterns. The experiments showed that the flow structures are very sensitive to inlet conditions. Within the covered range of velocities, several flow patterns were observed, namely bubbly flow, bubbly-slug transition flow, slug flow, slug-annular transition flow, annular flow, wavy annular flow and annular flow with dry zones. In the bubbly flow regime, a particular bubbly helical flow is observed before the dispersed bubbly flow.


Sign in / Sign up

Export Citation Format

Share Document