Co-Current Air-Water Two Phase Flow Patterns in Horizontal and Vertical Circular Tube Under Various Inlet Conditions

Author(s):  
S. Zeguai ◽  
S. Chikh ◽  
O. Rahli ◽  
L. Tadrist

An experimental apparatus is setup to analyze a co-current air-water two phase flow in a 3 mm inner diameter tube with horizontal and vertical orientations. Air is axially injected through a nozzle of 260 μm of inner diameter. Air and water flow rates are accurately controlled at the inlet, covering a range of apparent velocities JL = 0.00118 to 0.0786 m/s, JG = 0.002 to 3.538 m/s for the horizontal tube and JL = 0.00078 to 0.0589 m/s, JG = 0.003 to 3.538 m/s for the upward flow. A fast camera with 250 fps is utilized to visualize the flow patterns. The experiments showed that the flow structures are very sensitive to inlet conditions. Within the covered range of velocities, several flow patterns were observed, namely bubbly flow, bubbly-slug transition flow, slug flow, slug-annular transition flow, annular flow, wavy annular flow and annular flow with dry zones. In the bubbly flow regime, a particular bubbly helical flow is observed before the dispersed bubbly flow.

Author(s):  
Claudi Marti´n-Callizo ◽  
Bjo¨rn Palm ◽  
Wahib Owhaib ◽  
Rashid Ali

The present work reports on flow boiling visualization of refrigerant R-134a in a vertical circular channel with internal diameter of 1.33 mm and 235 mm in heated length. Quartz tube with a homogeneous ITO-coating is used allowing heating and simultaneous visualization. Flow patterns have been observed along the heated length with the aid of a digital camera with close-up lenses. From the flow boiling visualization, seven distinct two-phase flow patterns have been observed: Isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. Finally, the experimental flow pattern map is compared to models developed for conventional sizes as well as to a microscale map for air-water mixtures available in the literature, showing a large discrepancy.


Author(s):  
X. H. Yan ◽  
J. Z. Xu ◽  
D. W. Tang

This work presents experiments on the visualization of flow boiling of water in a horizontally placed and uniformly heated micro capillary tube. Three micro capillary tubes of quartz glass with inner diameters of 520, 315 and 242 μm are prepared. Experiments are performed with deionized water over a mass flux range from 39.3 to 362.5kg/m2s, and the inlet temperatures of 30, 45, and 60 °C respectively. By a video system with microscope and high-speed camera, the vapor-water two-phase flow’s patterns are recorded and analyzed. It has been found that periodic change of two-phase flow patterns and dramatic fluctuations of pressure drop occur in the micro capillary tubes. A new arch flow pattern, liquid film evaporating, and liquid droplet have been observed firstly. Bubbly flow has not been observed during our visual experiments for the inner diameter of 242 μm, the flow patterns are only made up of single liquid phase flow and two-phase elongate slug flow. The main flow regimes in these micro-tubes are single-liquid flow, slug flow, and annular flow with liquid film surrounded in the micro-tube with inner diameter of 520 and 315μm. Trends of pressure drop and flow patterns’ transition are compared and the results show that the increasing process of pressure drop is approximately in the single-liquid flow and bubbly flow, while the decreasing process of pressure drop is in the state of annular flow.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Claudi Martín-Callizo ◽  
Björn Palm ◽  
Wahib Owhaib ◽  
Rashid Ali

The present work reports on flow boiling visualization of refrigerant R-134a in a vertical circular channel with an internal diameter of 1.33 mm and 235 mm in heated length. A quartz tube with a homogeneous Indium Tin Oxide coating is used to allow heating and simultaneous visualization. Flow patterns have been observed along the heated length with the aid of high-speed complementary metal oxide semiconductor (CMOS) digital camera. From the flow boiling visualization, seven distinct two-phase flow patterns have been observed: isolated bubbly flow, confined bubbly flow, slug flow, churn flow, slug-annular flow, annular flow, and mist flow. Two-phase flow pattern observations are presented in the form of flow pattern maps. The effects of the saturation temperature and the inlet subcooling degree on the two-phase flow pattern transitions are elucidated. Finally, the experimental flow pattern map is compared with models developed for conventional sizes as well as to a microscale map for air-water mixtures available in literature, showing a large discrepancy.


Author(s):  
Hideo Ide ◽  
Kentaro Satonaka ◽  
Tohru Fukano

Experiments were performed to obtain, analyze and clarify the mean void fraction, the mean liquid holdup, and the liquid slug velocity and the air-water two-phase flow patterns in horizontal rectangular microchannels, with the dimensions equal to 1.0 mm width × 0.1 mm depth, and 1.0 mm width × 0.2 mm depth, respectively. The flow patterns such as bubble flow, slug flow and annular flow were observed. The microchannel data showed similar data patterns compared to those in minichannels with the width of 1∼10mm and the depth of 1mm which we had previously reported on. However, in a 1.0 × 0.1 mm microchannel, the mean holdup and the base film thickness in annular flow showed larger values because the effects of liquid viscosity and surface tension on the holdup and void fraction dominate. The remarkable flow characteristics of rivulet flow and the flow with a partial dry out of the channel inner wall were observed in slug flow and annular flow patterns in the microchannel of 0.1 mm depth.


Author(s):  
Bai Bofeng ◽  
Liu Maolong ◽  
Su Wang ◽  
Zhang Xiaojie

An experimental study was conducted on the air-water two-phase flow patterns in the bed of rectangular cross sections containing spheres of regular distribution. Three kinds of glass spheres with different diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test section. By means of visual observations of the two-phase flow through the test section, it was discovered that five different flow patterns occurred within the experimental parameter ranges, namely, bubbly flow, bubbly-slug flow, slug flow, slug-annular flow, and annular flow. A correlation for the bubble and slug diameter in the packed beds was proposed, which was an extended expression of the Tung/Dhir model, Jamialahmadi’s model, and Schmidt’s model. Three correlations were proposed to calculate the void friction of the flow pattern transition in bubble flow, slug flow, and annular flow based on the bubble model in the pore region. The experimental result showed that the modified Tung and Dhir model of the flow pattern transition was in better agreement with the experimental data compared with Tung and Dhir’s model.


2015 ◽  
Vol 9 (2) ◽  
pp. 99-104
Author(s):  
Romuald Mosdorf ◽  
Grzegorz Górski

Abstract The two-phase flow (water-air) occurring in square minichannel (3x3 mm) has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR) and Determinism (DET) have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR) allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.


2013 ◽  
Vol 816-817 ◽  
pp. 502-505
Author(s):  
Li De Fang ◽  
Yao Zhang ◽  
Wan Ling Zhang ◽  
Qing He ◽  
Yu Jiao Liang

This paper has propose a new method (acoustic emission) to distinguish the pattern of gas-liquid two-phase flow in the horizontal pipe. The signals which got from the probe when multiphase flow pattern changes in the pipe and the four probe installed on the different position. Through the analysis of time domination, energy of wavelet, collected the signal features and shows there has a significant differences among the three typical flow patterns (bubbly flow, stratified flow, annular flow). Energy of wavelet can clearly represents the signal strength. This paper found that the acoustic emission as a new method to distinguish flow patterns have good effect can as a new technology for the study of gas-liquid two-phase.


Author(s):  
H. Yang ◽  
T. S. Zhao ◽  
P. Cheng

Characteristics of gas-liquid two-phase flow patterns in a miniature square cross-section channel having a gas permeable sidewall have been investigated visually using a high-speed motion analyzer. The problem under consideration is encountered in the design of Direct Feed Methanol Fuel Cells (DMFC). The test section was a horizontally oriented rectangular transparent (Lucite material) channel with its lower wall consisting of a porous plate. Liquid was fed into the test section from its entrance, while gas was injected uniformly into the test section along the lower porous sidewall. The visual study shows the typical flow patterns found in the test section include bubbly flow, plug flow, slug flow, and annular flow. However, unlike the conventional co-current two-phase flow in a channel with gas and liquid uniformly entering from one of its ends, for the flow configuration considered in this work, it was found that two or three of the above mentioned flow patterns appeared simultaneously at different locations of the channel. The length of each flow pattern varied with the flow rates of liquid and gas. A distinct feature of annular flow for the present flow configuration is that small bubbles were continuously generated from the porous plate, which grew by blowing up the liquid film, formed a semi-sphere shape, and then ruptured and released gas into the core flow.


Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Yasuo Koizumi

The frictional pressure drops of gas-liquid two-phase flow in mini-pipes and mini-rectangular channels were investigated experimentally. The following test channels were used in the present experiments: commercial stainless-steel circular tubes with 0.6, 0.5 and 0.25 mm in inner diameter, FEP circular tube of 0.4 mm in inner diameter and rectangular channels, made of Acrylic resin, with 0.39 × 20.4 mm, 0.21 × 9.75 mm, 0.26 × 4.28 mm and 0.18 × 1.87 mm in height and width, respectively. The pressure drops of straight pipe, sudden enlargement and sudden contraction of gas-liquid two-phase flow in mini-pipes were measured for the test mini-channels. The pressure drops of rectangular minichannel were also measured. Experimental result showed that measured two-phase friction multipliers agreed well with a conventional Lockhart-Martinelli correlation for circular tubes and Mishima-Hibiki’s correlation for rectangular channels. Observed flow patterns by visualization were bubbly, slug, churn, ring and annular flow; the flow patterns in the present experiments were reproduced well by Baker’s flow pattern map.


Author(s):  
Shota Hayashi ◽  
Nobuhide Kasagi ◽  
Yuji Suzuki

In the present study, the effects of inlet geometry on the microscale two-phase flow patterns have been examined. The relationships among the flow pattern, the void fraction, the pressure loss and the heat transfer coefficient have been also investigated under different inlet flow conditions. At the inlet, a stainless steel tube is inserted into the micro glass tube, of which inner diameter is 300 and 600 μm. The gas and liquid paths and the diameter of the inner tube are interchangeable. The flow patterns are recorded at the inlet and also in the developed region in the micro tubes. The flow patterns observed in the 600 μm tube are bubbly, slug, churn and annular flows, while bubbly and churn flows are not present in the 300 μm tube. For bubbly and slug flows, bubble formation process is found to be strongly affected by the inlet conditions. Accordingly, the pressure loss as well as the heat transfer rate are changed. In addition, the bubble size is not uniquely determined; bubbles of different sizes are observed in repeated experiments under the same inlet flow conditions. On the other hand, for churn and annular flows, the flow patterns are not affected by the inlet conditions.


Sign in / Sign up

Export Citation Format

Share Document