Large Eddy Simulation of the Heat Transfer Due to Swirling and Non-Swirling Jet Impingement

Author(s):  
Naseem Uddin ◽  
S. O. Neumann ◽  
B. Weigand

Turbulent impinging jet is a complex flow phenomenon involving free jet, impingement and subsequent wall jet development zones; this makes it a difficult test case for the evaluation of new turbulence models. The complexity of the jet impingement can be further amplified by the addition of the swirl. In this paper, results of Large Eddy Simulations (LES) of swirling and non-swirling impinging jet are presented. The Reynolds number of the jet based on bulk axial velocity is 23000 and target-to-wall distance (H/D) is two. The Swirl numbers (S) of the jet are 0,0.2, 0.47. In swirling jets, the heat transfer at the geometric stagnation zone deteriorates due to the formation of conical recirculation zone. It is found numerically that the addition of swirl does not give any improvement for the over all heat transfer at the target wall. The LES predictions are validated by available experimental data.

Author(s):  
Thangam Natarajan ◽  
James Jewkes ◽  
Ramesh Narayanaswamy ◽  
Yongmann M. Chung ◽  
Anthony D. Lucey

The fluid dynamics and heat transfer characteristics of a turbulent round jet are modelled numerically using Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). Meshes with varying degrees of coarseness, with both radial and axial refinements are investigated. Discretization is carried out using the finite volume method. The jet configurations are chosen to enable validation against well-established experimental jet-impingement heat-transfer studies, particularly that of Cooper et al. [1]. The Reynolds number studied is 23000. The height of discharge from the impingement wall is fixed at twice the jet diameter. The work critically examines the effect of Reynolds number, standoff distance and helps to ascertain the relative merits of various turbulence models, by comparing turbulent statistics and the Nusselt number distributions. The present work is carried out as a preliminary validation, in a wider study intended to determine the thermofluidic behaviour of jets impinging upon an oscillating surface.


2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anuj Kumar Shukla ◽  
Anupam Dewan

Purpose Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration. Design/methodology/approach Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes. Findings It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number. Originality/value Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.


Author(s):  
Tausif Jamal ◽  
D. Keith Walters

Abstract Unsteady turbulent wall bounded flows can produce complex flow physics including temporally varying mean pressure gradients, intermittent regions of high turbulence intensity, and interaction of different scales of motion. As a representative example, pulsating channel flow presents significant challenges for newly developed and existing turbulence models in computational fluid dynamics (CFD) simulations. The present study investigates the performance of the Dynamic Hybrid RANS-LES (DHRL) model with a newly proposed dynamic time filtering (DTF) technique, compared against an industry standard Reynolds-Averaged Navier-Stokes (RANS) model, Monotonically Integrated Large Eddy Simulation (MILES), and two conventional Hybrid RANS-LES (HRL) models. Model performance is evaluated based on comparison to previously documented Large Eddy Simulation (LES) results. Simulations are performed for a fully developed flow in a channel with time-periodic driving pressure gradient. Results highlight the relative merits of each model type and indicate that the use of a dynamic time filtering technique improves the accuracy of the DHRL model when compared to a static time filtering technique. A comprehensive evaluation of the results suggests that the DHRL-DTF method provides the most consistently accurate reproduction of the time-dependent mean flow characteristics for all models investigated.


Author(s):  
Deepchand Singh Negi ◽  
Arvind Pattamatta

A large number of experimental and theoretical studies investigating heat transfer of impinging jet and jet arrays exist in the literature. However, there are only a few experimental and numerical studies that consider the heat transfer performance of the impinging jet and jet array over complex impinging surface topologies. In spite of these studies, several other factors concerning the dimpled target plate configuration such as dimple height, diameter, pitch spacing between dimples, and their effects on the heat transfer coefficient have not yet been well apprehended. The purpose of the present study is to address some of these aspects through a detailed computational investigation of 3D impinging jet interaction on dimpled target plates. The initial section of the study is focused on the evaluation of different turbulence models in capturing the complex flow features associated with dimpled topology. These models are validated for Nusselt number against previous experimental data in literature. This is followed by a parametric study in which geometric parameters of the dimpled target plate such as dimple diameter, pitch spacing between dimples and dimple height are varied to understand their role on heat transfer enhancement. The final section of the study deals with the optimization of the above geometric parameters based on three factorial design of parametric space. Results from these designed simulations are used to construct a surrogate model based on response surface analysis and the optimized configuration is determined. The objective functions for optimization include maximizing the average Nusselt number, Nuavg, and minimizing the deviation of maximum Nusselt number, Numax-sd. With respect to the reference configuration there is 12% and 8.58 % increase in the average Nusselt number values for the optimized case corresponding to Reynolds number of 3000 and 8200 respectively. Enhancement in terms of Nusselt number is observed with the dimpled target plate over corresponding non dimpled target plates.


Author(s):  
Z. Li ◽  
L. Khezzar ◽  
N. Kharoua

This study is devoted to a forced turbulent plane jet emerging from a slot rectangular nozzle impinging on a semi-cylindrical surface using large eddy simulation. Both forced and unforced cases are considered. The Reynolds number, based on the slot velocity and width, was 5600. The LES simulations were validated using published experimental results and contrasted against RANS models. The study is performed for a slot-to-surface distance equal to twice the nozzle width and considers two forcing frequencies equal to 400 and 800 Hz. The jet was excited using a sinusoidal inlet velocity profile at several harmonics of the preferred mode and the flow and heat transfer characteristics were analyzed. The phase averaged Nusselt number exhibited several peaks along the semi-circular target plane. Increases above the steady unforced jet values of heat transfer rates were obtained in the stagnation region and decreases were observed in the wall jet region. The fluctuations in the phase averaged surface Nusselt number are explained in terms of the interaction of organized shear layer structures with induced target wall structures.


2021 ◽  
pp. 1-19
Author(s):  
Farah Nazifa Nourin ◽  
Ryoichi S. Amano

Abstract In this study, the internal cooling channel was investigated without any bend. Smooth surfaces and dimpled surfaces were investigated using the different combinations of connecting circular and rectangular holes. The computations were performed using the Large Eddy Simulation (LES) model for Reynolds (Re) numbers from 10,000 to 50,000. A total of six different connecting holes were investigated with a smooth and dimpled surface. A partial spherical dimple with two circular holes showed the highest heat transfer, but it has a higher pressure loss penalty. Even though the Leaf dimple with the rectangle indicated a low heat transfer because of low-pressure drops, it represents the highest efficiency at higher Reynolds numbers.


Author(s):  
G. Arvind Rao ◽  
Myra Kitron-Belinkov ◽  
Yeshayahou Levy

Jet impingement is known to provide higher heat transfer coefficients as compared to other conventional modes of single phase heat transfer. Jet impingement has been a subject of research for a long time. Single jets have been studied extensively for their heat transfer and flow characteristics. However, for practical usage, multiple jets (in the form of arrays) have to be used for increasing the total heat transfer over a given area. Most of the research on multiple impinging jets have focused on evaluating heat transfer correlations for such arrays in the turbulent regime (Re >2500). The focus of the present paper is on experimental investigation of a large array of impinging jets in the low Reynolds number regime (<1000) and subsequently numerically modeling the same array by using existing Computational Fluid Dynamics tools in order to study the physical phenomena within such a complex system. Different turbulence models were used for modeling the fluid flow within these impinging jets and it was found that the SST k-ω model is the most suitable. Results obtained from CFD analysis are in reasonable agreement with experimental values. It was observed that CFD simulations over predicted the Nusselt number and pressure drop when compared to the experimentally obtained values. It was also observed that the decrease in Nusselt number along the streamwise direction of the array was not monotonic. This could be due to the complex flow field resulting from interaction between the crossflow and the impinging jets in the wall jet region. It is anticipated that results obtained from the present work will provide greater insight into the flow behavior and the heat transfer mechanism occurring in multiple impinging jets.


Sign in / Sign up

Export Citation Format

Share Document