Reynolds Averaged and Large Eddy Computations of Flow and Heat Transfer Under Round Jet Impingement

Author(s):  
Thangam Natarajan ◽  
James Jewkes ◽  
Ramesh Narayanaswamy ◽  
Yongmann M. Chung ◽  
Anthony D. Lucey

The fluid dynamics and heat transfer characteristics of a turbulent round jet are modelled numerically using Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). Meshes with varying degrees of coarseness, with both radial and axial refinements are investigated. Discretization is carried out using the finite volume method. The jet configurations are chosen to enable validation against well-established experimental jet-impingement heat-transfer studies, particularly that of Cooper et al. [1]. The Reynolds number studied is 23000. The height of discharge from the impingement wall is fixed at twice the jet diameter. The work critically examines the effect of Reynolds number, standoff distance and helps to ascertain the relative merits of various turbulence models, by comparing turbulent statistics and the Nusselt number distributions. The present work is carried out as a preliminary validation, in a wider study intended to determine the thermofluidic behaviour of jets impinging upon an oscillating surface.

Author(s):  
Naseem Uddin ◽  
S. O. Neumann ◽  
B. Weigand

Turbulent impinging jet is a complex flow phenomenon involving free jet, impingement and subsequent wall jet development zones; this makes it a difficult test case for the evaluation of new turbulence models. The complexity of the jet impingement can be further amplified by the addition of the swirl. In this paper, results of Large Eddy Simulations (LES) of swirling and non-swirling impinging jet are presented. The Reynolds number of the jet based on bulk axial velocity is 23000 and target-to-wall distance (H/D) is two. The Swirl numbers (S) of the jet are 0,0.2, 0.47. In swirling jets, the heat transfer at the geometric stagnation zone deteriorates due to the formation of conical recirculation zone. It is found numerically that the addition of swirl does not give any improvement for the over all heat transfer at the target wall. The LES predictions are validated by available experimental data.


Author(s):  
T S D O'Mahoney ◽  
N J Hills ◽  
J W Chew ◽  
T Scanlon

Unsteady flow dynamics in turbine rim seals are known to be complex and attempts accurately to predict the interaction of the mainstream flow with the secondary air system cooling flows using computational fluid dynamics (CFD) with Reynolds-averaged Navier–Stokes (RANS) turbulence models have proved difficult. In particular, published results from RANS models have over-predicted the sealing effectiveness of the rim seal, although their use in this context continues to be common. Previous studies have ascribed this discrepancy to the failure to model flow structures with a scale greater than the one which can be captured in the small-sector models typically used. This article presents results from a series of Large-Eddy Simulations (LES) of a turbine stage including a rim seal and rim cavity for, it is believed by the authors, the first time. The simulations were run at a rotational Reynolds number Reθ = 2.2 × 106 and a main annulus axial Reynolds number Rex = 1.3 × 106 and with varying levels of coolant mass flow. Comparison is made with previously published experimental data and with unsteady RANS simulations. The LES models are shown to be in closer agreement with the experimental sealing effectiveness than the unsteady RANS simulations. The result indicates that the previous failure to predict rim seal effectiveness was due to turbulence model limitations in the turbine rim seal flow. Consideration is given to the flow structure in this region.


Author(s):  
Yutaka Oda ◽  
Kenichiro Takeishi

Two-dimensional jet impingement heat transfer enhanced by submilli-scale ribs has been studied by mass transfer experiments and large eddy simulations. Installation of ribs induces flow separation and reattachment, and realize high heat transfer coefficient in the wall jet region. Higher rib-height was found to be effective to make the enhanced heat transfer region larger. Large eddy simulation was found to predict reattachment length correctly, which then resulted in good agreement of local heat transfer coefficients between experiment and simulations except the stagnation and reattachment regions, where over- and under-estimation occurs.


2021 ◽  
Vol 9 (7) ◽  
pp. 742
Author(s):  
Minsheng Zhao ◽  
Decheng Wan ◽  
Yangyang Gao

The present work focuses on the comparison of the numerical simulation of sheet/cloud cavitation with the Reynolds Average Navier-Stokes and Large Eddy Simulation(RANS and LES) methods around NACA0012 hydrofoil in water flow. Three kinds of turbulence models—SST k-ω, modified SST k-ω, and Smagorinsky’s model—were used in this paper. The unstable sheet cavity and periodic shedding of the sheet/cloud cavitation were predicted, and the simulation results, namelycavitation shape, shedding frequency, and the lift and the drag coefficients of those three turbulence models, were analyzed and compared with each other. The numerical results above were basically in accordance with experimental ones. It was found that the modified SST k-ω and Smagorinsky turbulence models performed better in the aspects of cavitation shape, shedding frequency, and capturing the unsteady cavitation vortex cluster in the developing and shedding period of the cavitation at the cavitation number σ = 0.8. At a small angle of attack, the modified SST k-ω model was more accurate and practical than the other two models. However, at a large angle of attack, the Smagorinsky model of the LES method was able to give specific information in the cavitation flow field, which RANS method could not give. Further study showed that the vortex structure of the wing is the main cause of cavitation shedding.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


Author(s):  
H. T. C. Pedro ◽  
K.-W. Leung ◽  
M. H. Kobayashi ◽  
H. R. Riggs

This work concerns the numerical investigation of the impact of a wave on a square column. The wave is generated by a dam break in a wave tank. Two turbulence models were used: Large Eddy Simulations (LES) and Unsteady Reynolds Averaged Navier-Stokes (URANS). The numerical simulations were carried out using a finite volume approximation and the SIMPLE algorithm for the solution of the governing equations. Turbulence was modeled with the standard Smagorinsky-Lilly subgrid-model for the LES and the standard κ-ε model for the URANS. The results are validated against experimental data for the wave impact on a square column facing the flow. The results, especially for LES, show very good agreement between the predictions and experimental results. The overall accuracy of the LES, as expected, is superior to the URANS. However, if computational resources are limited, URANS can still provide satisfactory results for structural design.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Mandana S. Saravani ◽  
Nicholas J. DiPasquale ◽  
Ahmad I. Abbas ◽  
Ryoichi S. Amano

Abstract This study presents findings on combined effects of Reynolds number and rotational effect for a two-pass channel with a 180-deg turn, numerically and experimentally. To have a better understanding of the flow behavior and to create a baseline for future studies, a smooth wall channel with the square cross section is used in this study. The Reynolds number varies between 6000 and 35,000. Furthermore, by changing the rotational speed, the maximum rotation number of 1.5 is achieved. For the numerical investigation, large eddy simulation (LES) is utilized. Results from the numerical study show a good agreement with the experimental data. From the results, it can be concluded that increasing both Reynolds number and rotational speed is in favor of the heat transfer coefficient enhancement, especially in the turn region.


Sign in / Sign up

Export Citation Format

Share Document