Model-Based Optimization and Pressure Fluctuation Control of Pressure Reservoir in Electrically Controlled Fuel Injection System for Single Cylinder Diesel Engine

Author(s):  
Ke Zhang ◽  
Zhifeng Xie ◽  
Ming Zhou

Single-cylinder diesel engines usually employ mechanically actuated or time-type electrically controlled fuel injection systems. But due to the lack of flexibility to provide high pressure and fully varying injection parameters, fuel efficiency and emissions are poor. Although modern multi-cylinder engines have employed high pressure common rail fuel injection system for a long time, this technology has not been demonstrated in single-cylinder diesel engines. Due to the small installation space and little fuel injection amount of single cylinder diesel engine, high pressure common rail fuel injection system cannot be employed directly. In this study an electrically controlled high pressure fuel injection system of time-pressure-type (PTFS) for single-cylinder diesel engine was demonstrated. PTFS integrated the fuel pump and pressure reservoir (PR) to reduce installation space, which enabled it to match various kinds of single-cylinder diesel engines. However, the volume of the PR of PTFS is still limited, leading to obvious pressure fluctuation induced by periodic fuel pumping and injection. Pressure fluctuation might affect the stability and consistency of fuel injection, deteriorating the combustion and emissions of the engine further. This work established a mathematical model for the system, and studied the effect of the main parameters of the PR to the pressure fluctuations in the PR. The structure and dimensions of the system were optimized and a damping mechanism was proposed to reduce the pressure fluctuation. The optimized pressure fluctuation of PTFS achieved an acceptable level which can support steady and effective fuel injection. As a result, the fuel consumption efficiency and emission level of single cylinder diesel engine were enhanced.

2009 ◽  
Vol 2009.48 (0) ◽  
pp. 173-174
Author(s):  
Junichi MATSUOKA ◽  
Hiromi ISHTTANI ◽  
Kazuhiro HAYASHIDA ◽  
Hiroyuki YAMADA

2009 ◽  
Vol 138 (3) ◽  
pp. 28-36
Author(s):  
Sathaporn CHUEPENG ◽  
Hongming XU ◽  
Athanasios TSOLAKIS ◽  
Mirosław WYSZYŃSKI ◽  
Jonathan HARLAND

The paper presents characterisations of nanoparticle number in exhaust gases from biodiesel blends (B30, 30% of RME by volume with ultra low sulphur diesel fuel, ULSD) combustion in a V6 diesel engine equipped with a common rail fuel injection system. The engine was operated on three steady-state test points extracted from the New European Driving Cycle without engine hardware or the engine management system (EMS) modification. A fast differential mobility spectrometer was used to determine particle number size distribution based on electrical mobility equivalent diameter. The distribution was dependent on the engine operating condition and the rate of exhaust gas recirculation (EGR). The particle size in the nucleation mode from B30 combustion with and without EGR is smaller than that of ULSD while giving higher number concentration for all engine operating conditions tested. However, in the accumulation mode with and without EGR, the smaller sizes and the lower total numbers from B30 combustion were observed. For both fuels, EGR shows insignificant changes to the primary particle size but noticeable increase in particle size and number in the accumulation mode. In overall, compared to the ULSD case, the B30 combustion reduced particle size and lowered total particle number in exhaust gas emitted from the engine with EGR.


Sign in / Sign up

Export Citation Format

Share Document