Radioactive Waste Management in the Czech Republic

Author(s):  
Vitezslav Duda

Radioactive waste and spent nuclear fuel are generated in the Czech Republic as a consequence of the peaceful use of nuclear energy and ionising radiation in many industries, particularly in the generation of nuclear energy, health care (therapy, diagnostics), research, and agriculture. The current extent of utilisation of nuclear energy and ionising radiation in the Czech Republic is comparable with that of other developed countries. The Concept of Radioactive Waste and Spent Nuclear Fuel Management is a fundamental document formulating government and state authority strategy for the period up to approximately 2025 (affecting policy up to the end of the 21st century), concerning the organizations which generate radioactive waste and spent nuclear fuel. The Concept puts forward solutions to provide for the disposal of waste in compliance with requirements for the protection of human health and the environment without excessively transferring any of the current impacts of nuclear energy and ionising radiation utilisation to future generations. The Concept was approved by the government of the Czech Republic in 2002. According to the Concept high level waste and spent nuclear fuel generated at the Dukovany and Temeli´n nuclear power plants will eventually be disposed of in a deep geological repository. Such a repository should commence operation in 2065. Work aimed at selecting potentially suitable sites began in 1992, but the final site has not yet been determined. In compliance with the aforementioned Concept, the Radioactive Waste Repository Authority (RAWRA) is responsible for finding two suitable sites till 2015. The current stage of evaluation covers the whole territory of the Czech Republic and involves complex criteria and requirements. On the basis of current findings RAWRA suggested six potential sites for further investigation at the beginning of the year 2003.

2022 ◽  
Author(s):  
Rahul Agarwal ◽  
Rama Mohana Rao Dumpala ◽  
Manoj Kumar Sharma ◽  
Donald M Noronha ◽  
Jayashree S Gamare ◽  
...  

Recovery of Plutonium from aqueous carbonate waste solutions generated during reprocessing of spent nuclear fuel is a key concern for sustainable nuclear energy programmes and remediation of radioactive waste. Reported...


2019 ◽  
Vol 133 ◽  
pp. 02005
Author(s):  
Markéta Camfrlová

Nuclear energy accounts for a significant part of the total energy production in the Czech Republic, which is currently facing a problem dealing with the high-level radioactive waste (HLW) and the spent nuclear fuel (SNF). Deep repository is the safest option for storage of HLW. Rock environment of the area must guarantee the stability of the deep geological repository for at least 100,000 years. The aim of the research is a long-term evaluation of the climatic changes of the hypothetical area of interest, which corresponds to the candidate sites for deep geological repository in the Czech Republic. The occurrences of endogenous and exogenous phenomena, which could affect site stability, were evaluated. Concerning exogenous processes, research focuses mainly on the assessment of climatic effects. The climate scenarios for the Central Europe were examined – global climate change, glaciation, and the depth of permafrost as well as CO2 increase.


Author(s):  
Frantisek Svitak ◽  
Karel Svoboda ◽  
Josef Podlaha

In May 2004, the Global Threat Reduction Initiative agreement was signed by the governments of the United States and the Russian Federation. The goal of this initiative is to minimize, in cooperation with the International Atomic Energy Agency (IAEA) in Vienna, the existing threat of misuse of nuclear and radioactive materials for terrorist purposes, particularly highly enriched uranium (HEU), fresh and spent nuclear fuel (SNF), and plutonium, which have been stored in a number of countries. Within the framework of the initiative, HEU materials and SNF from research reactors of Russian origin will be transported back to the Russian Federation for reprocessing/liquidation. The program is designated as the Russian Research Reactor Fuel Return (RRRFR) Program and is similar to the U.S. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program, which is underway for nuclear materials of United States origin. These RRRFR activities are carried out under the responsibilities of the respective ministries (i.e., U.S. Department of Energy (DOE) and Russian Federation Rosatom). The Czech Republic and the Nuclear Research Institute Rez, plc (NRI) joined Global Threat Reduction Initiative in 2004. During NRI’s more than 50 years of existence, radioactive and nuclear materials had accumulated and had been safely stored on its grounds. In 1995, the Czech regulatory body, State Office for Nuclear Safety (SONS), instructed NRI that all ecological burdens from its past activities must be addressed and that the SNF from the research reactor LVR-15 had to be transported for reprocessing. At the end of November 2007, all these activities culminated with the unique shipment to the Russian Federation of 527 fuel assemblies of SNF type EK-10 (enrichment 10% U235) and IRT-M (enrichment 36% and 80% U235) and 657 irradiated fuel rods of EK-10 fuel, which were used in LVR-15 reactor.


Author(s):  
Ewoud Verhoef ◽  
Charles McCombie ◽  
Neil Chapman

The basic concept within both EC funded SAPIERR I and SAPIERR II projects (FP6) is that of one or more geological repositories developed in collaboration by two or more European countries to accept spent nuclear fuel, vitrified high-level waste and other long-lived radioactive waste from those partner countries. The SAPIERR II project (Strategic Action Plan for Implementation of Regional European Repositories) examines in detail issues that directly influence the practicability and acceptability of such facilities. This paper describes the work in the SAPIERR II project (2006–2008) on the development of a possible practical implementation strategy for shared, regional repositories in Europe and lays out the first steps in implementing that strategy.


Author(s):  
Josef Podlaha

After more than 50 years of operation of the research reactor operated by ÚJV Řež, a. s. (ÚJV) or the Research Centre Řež, as the case may be, a large amount of spent nuclear fuel (SNF) of Russian origin has accumulated. In 2005, ÚJV joined the Russian Research Reactor Fuel Return (RRRFR) program under the US-Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF) using the ŠKODA VPVR/M transport packaging system (TPS). Two SNF shipments from ÚJV were carried out in 2007 and 2013. After the shipments were completed, only low-enriched nuclear fuel with a maximum enrichment below 20% of 235U remained on the territory of the Czech Republic. ÚJV also participates in shipments of SNF from other countries. The services of ÚJV comprise mainly ŠKODA VPVR/M TPS leasing, technical oversight and expertise during cask handling, SNF loading and cask closing and sealing. Up to now, ÚJV has participated in thirteen shipments of SNF from eight countries; one shipment is currently being prepared. High-level radioactive waste (HLW) will be generated from SNF reprocessing. The vitrified HLW will be returned to the Czech Republic as stated in the Russian-Czech Intergovernmental Agreement on Co-operation in Nuclear Energy. The return of the waste represents very complex and complicated work, technically, legally and contractually.


Author(s):  
Želimir Veinović ◽  
Biljana Kovačević Zelić ◽  
Dubravko Domitrović

Management of Spent Nuclear Fuel (SF) and High-Level Waste (HLW) is one of the most important and challenging problems of the modern world. Otherwise a clean, cheap, constant, and secure way to produce electricity, nuclear power plants create large amounts of highly hazardous waste. Repositories—deep Geological Disposal Facilities (GDF)—for these types of waste must prevent radionuclides from reaching the biosphere, for up to 1,000,000 years, migrating from a deep (more than 300m), stable geological environment. At present, there are no operating GDFs for SF and/or HLW, mostly due to the difficult and complex task of preparing safety cases and licensing. The purpose of this chapter is to validate the generic R&D activities in this area and present alternative concepts of Radioactive Waste (RW) management: retrievability, reversibility, regional GDFs, long-term storage, and deep borehole disposal, demonstrating the main engineering tasks in solving the problem of RW management and disposal.


Author(s):  
Bo Yang ◽  
He-xi Wu ◽  
Yi-bao Liu

With the sustained and rapid development of the nuclear power plants, the spent fuel which is produced by the nuclear power plants will be rapidly rising. Spent fuel is High-level radioactive waste and should be disposed safely, which is important for the environment of land, public safety and health of the nuclear industry, the major issues of sustainable development and it is also necessary part for the nuclear industry activities. It is important to study and resolve the high-level radioactive waste repository problem. Spent nuclear fuel is an important component in the radioactive waste, The KBS-3 canister for geological disposal of spent nuclear fuel in Sweden consists of a ductile cast iron insert and a copper shielding. The ductile cast iron insert provides the mechanical strength whereas the copper protects the canister from corrosion. The canister inserts material were referred to as I24, I25 and I26, Spent nuclear fuel make the repository in high radiant intensity. The radiation analysis of canister insert is important in canister transport, the dose analysis of repository and groundwater radiolysis. Groundwater radiolysis, which produces oxidants (H2O2 and O2), will break the deep repository for spent nuclear fuel. The dose distribution of canister surface with different kinds of canister inserts (I24, I25 and I26) is calculated by MCNP (Ref. 1). Analysing the calculation results, we offer a reference for selecting canister inserts material.


MRS Advances ◽  
2016 ◽  
Vol 1 (61) ◽  
pp. 4075-4080
Author(s):  
Fredrik Vahlund

ABSTRACTSince 1988 the Swedish Nuclear Fuel and Waste Management Co. operates a repository for low- and intermediate-level short-lived radioactive waste, SFR, in Forsmark, Sweden. Due to decommissioning of the nuclear power plants additional storage capacity is needed. In December 2014, an application to extend the repository was therefore submitted. One key component of this application was an assessment of post-closure safety of the extended SFR. For this safety assessment, a methodology based on that developed by SKB for the spent nuclear fuel repository was used and the impact of the degradation of repository components, the evolution of the surface system and changes of future climate on the radiological safety of the repository was assessed over a period of 100,000 years. The central conclusion of the SR-PSU safety assessment is that the extended SFR repository meets requirements on protection of human health and of the environment that have been established by the Swedish radiation safety authority for the final disposal of radioactive waste. Furthermore, the design of the repository was shown suitable for the waste selected and the applied methodology suitable for the safety assessment.


Sign in / Sign up

Export Citation Format

Share Document