UK Strategy for Nuclear Industry LLW

Author(s):  
Matthew Clark ◽  
Joanne Fisher

In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as ‘Government’) published their policy for the management of solid low level waste (‘the Policy’). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m3) than there is capacity at the LLWR (∼0.75 million m3), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry.

Author(s):  
Jason Dean ◽  
David Rossiter

The UK Nuclear Industry continues to produce significant quantities of Low Level Waste (LLW) as decommissioning projects generating waste become more prevalent. Current infrastructure and projected increasing waste volumes will deliver a volumetric shortfall of storage capacity in the near future. Recently established as a stand alone site licence company, the Low Level Waste Repository (LLWR) near Drigg, in West Cumbria (formerly operated and owned by British Nuclear Group) is tasked with managing the safe treatment and disposal of LLW in the UK, on behalf of the Nuclear Decommissioning Authority (NDA). The problem is complex involving many stakeholders with potentially different priorities. Previously, most nuclear waste generators operated independently with limited integration with other similar organisations. However, the current financial, programme and technical pressures require collaborative working to facilitate a step-change improvement in LLW management. Achieving this quickly is as much of a challenge as delivering robust cost effective technical solutions. NDA is working in partnership with LLWR to develop a LLW Strategy for the Nuclear Industry and has in parallel commissioned a number of studies by the National Nuclear Laboratory (NNL), looking at opportunities to share best practice. A National Strategy Group has been established to develop a working partnership between the Nuclear Decommissioning Authority, LLW Repository Ltd, Regulators, Stakeholders and LLW Consignors, promoting innovation, value for money, and robust implementation of the waste hierarchy (avoid-reduce-re-use-recycle). Additionally the LLWR supported by the NNL have undertaken a comprehensive strategic review of the UK’s LLW management activities. Initial collaborative work has provided for the first time a detailed picture of the existing strategic baseline and identified significant national benefits from improving the way LLW is forecasted, characterised, segregated, and treated in line with the waste hierarchy. Implementation of volume reduction technologies, such as incineration and metal treatment, is critical to mitigate the LLWR capacity gap and reduce NDA’s liabilities. The cumulative effect of these solutions has the potential to reduce lifetime costs by several £billion and extend the life of the existing LLWR site to 2070 and possibly beyond. This work has informed the NDA’s UK Nuclear Industry LLW Strategy, published for consultation in June 2009 and the Draft UK LLW Management Plan which sets out how the strategy will be implemented. Technical and infrastructure solutions have been found to exist via the supply chain supporting deliver of the necessary step changes in the near future. Work continues to reduce the LLW inventory forecast uncertainties and evaluate strategic implementation options in more detail, e.g. benefits of national vs. local treatment and disposal solutions, plus on gaining the corresponding stakeholder acceptance and operational authorisations.


Author(s):  
Kevin Dodd ◽  
Joe Robinson ◽  
Maria Lindberg

Best Practicable Environmental Option (BPEO) and Best Practicable Means (BPM) are concepts well established in the nuclear industry to help guide and inform waste management decision making. The recycling of contaminated metal waste in the UK is not well established, with the majority of waste disposed of at the Low Level Waste Repository (LLWR) at Drigg. This paper presents an overview of the Strategic BPEO study completed by Studsvik examining the options for low level metal waste management and a subsequent BPM study completed in support of a proposed metals recycling service. The environmental benefits of recycling metals overseas is further examined through the application of lifecycle analysis to the metals recycling process. The methodologies used for both studies are discussed and the findings of these studies presented. These indicate that recycling contaminated metal is the preferred option, using overseas facilities until UK facilities are available. The BPM for metals recycling is discussed in detail and indicates that a tool box for processing metal waste is required to ensure BPM is applied on a case by case basis. This is supported by effective management of waste transport and waste acceptance criteria. Whilst the transport of contaminated metal overseas for treatment adds to the environmental burden of metals recycling, this when compared with the production of virgin metal, is shown to remain beneficial. The results of the Studsvik studies demonstrate the benefits of recycling metals, the options available for such a service and challenges that remain.


Author(s):  
Andrew Craze ◽  
Pete Davis ◽  
Matthew Clark

NDA is delivering a Strategic Environmental Assessment (SEA) to underpin the UK Nuclear Industry Low Level Waste Strategy. The purpose of this assessment is embed sustainability issues into our decision making and to fulfil our requirements under the European Union’s Strategic Environmental Assessment (SEA) Directive (2004/42/EU) and transposing UK Regulations, and to underpin the development of the strategy. The outputs of the SEA have provided input into particular aspects of the strategy, leading to a more robust and better informed result. Development of options to be assessed under the SEA has looked at a number of factors, including: • what the strategy is aiming to achieve; • expectation from stakeholders as to what should be addressed; • consideration of tactical approaches to implementation of the strategy in addition to high level strategic issues; • links to other projects and programmes (for example the Environmental Safety Case for the Low Level Waste Repository. The SEA aims to provide a robust assessment of the environmental and sustainability impacts of alternative strategies for providing continued capability and capacity for the management and disposal of LLW in the UK. The assessment also considers other, more tactical, issues around implementation of the strategy, for example: issues around the location of LLW management facilities; the environmental impacts of alternative waste treatment options (metal recycling etc); considerations of alternative approaches to the classification of radioactive waste and opportunities that would result. Critical to the development of the SEA has been the involvement of statutory and non-statutory stakeholders, who have informed both the output and the approach taken.


Author(s):  
Anna Clark

The management of contaminated ground and groundwater is a notable contributor to dealing with the challenge we face in cleaning up the legacy of the UK’s civil nuclear industry in a safe, cost-effective and environmentally responsible manner. To facilitate this mission, the Nuclear Decommissioning Authority, Environmental Regulators and Safety Regulators are working together to develop common expectations for the management of contaminated ground and groundwater arising on and extending off nuclear licensed sites in the UK. The aims of this work are to: • set out shared expectations for land quality management, explaining any differing expectations where consensus is difficult; • interpret expectations to ensure they are clear and implementable, facilitating planning of programmes and deliverables; • provide a framework for dialogue against which progress in land quality management can be mapped; • promote positive action to manage land quality in a proportionate and sustainable manner to achieve consistent standards; and • identify whether areas of the regulatory framework or NDA contractual requirements warrant review and propose improvements for consideration, as appropriate. This paper outlines the process currently ongoing to identify the best way of achieving these aims in a manner that avoids compromising the respective statutory obligations, duties and functions of each party.


Author(s):  
David Broughton

UKAEA’s mission at its Dounreay establishment in the north of Scotland is to restore the site so that it can be used for other purposes, with a minimal effect on the environment and requiring minimal attention by future generations. A Dounreay Site Restoration Plan (DSRP) has been produced. It sets out the decommissioning and radioactive waste management activities to restore the site within the next 60 years. Management of solid low level radioactive waste (LLW) that already exists, and that which will be produced as the DSRP progresses is an essential site restoration activity. Altogether around 150,000m3 (5.3Mft3) of untreated LLW could arise. This will then need to be treated, packaged and managed, the resulting volume being around 200,000m3 (7Mft3). A project to develop a long term strategy for managing all Dounreay’s existing and future LLW was initiated in 1999. The identification of complete solutions for management of LLW arising from the site restoration of Dounreay, an integrated reactor and reprocessing site, is novel in the UK. The full range of LLW will be encountered. UKAEA is progressing this specific project during a period when both responsibility and policy for UK decommissioning and radioactive waste management are evolving in the UK. At present, for most UK nuclear operators, there are no recognised routes for disposing of significant volumes of decommissioning LLW that has either lower or higher radioactivity than the levels set by BNFL for disposal at the UK national LLW disposal site at Drigg. A large project such as this has the potential to affect the environmental and social conditions that prevail in the area where it is implemented. Local society therefore has an interest in a project of this scale and scope, particularly as there could be a number of feasible solutions. UKAEA is progressing the project by following UK established practice of undertaking a Best Practicable Environmental Option (BPEO) study. UKAEA has no preconceptions of the outcome and is diligently not prejudging issues prematurely. The BPEO process draws experts and non-experts alike into the discussions and facilitates a structured analysis of the options. However to permit meaningful debate those options have to be at first generated, and secondly investigated. This has taken UKAEA two and a half years in technical assessment of options at a cost of around £23/4M. The options and issues have been investigated to the depth necessary for comparisons and valid judgements to be made within the context of the BPEO study. Further technical evaluation will be required on those options that eventually emerge as the BPEO. UKAEA corporate strategy for stakeholder participation in BPEO studies is laid out in “Restoring our Environment”, published in October 2002. This was developed by a joint approach between project managers, Corporate Communications, and discussion with the regulators, government departments and Scottish Executive. An Internal Stakeholder Panel was held in March 2003. The Panel was independently facilitated and recorded. Eight Panel members attended who provided a representative cross-section of people working on site. Two External Stakeholder Panels were held in Thurso at the end of May 2003. A Youth Stakeholder Panel was held at which three sixth form students from local High Schools gave their views on the options for managing Dounreay’s LLW. The agenda was arranged to maximise interactive discussion on those options and issues that the young people themselves considered important. The second External Stakeholder Panel was based on the Dounreay Local Liaison Committee. Additional participants were invited in acknowledgement of the wider issues involved. As the use of Drigg is an option two representatives from the Cumbrian local district committee attended. From all the knowledge and information acquired from both the technical and stakeholder programmes UKAEA will build up the objective line of argument that leads to the BPEO emerging. This will be the completion of this first stage of the project and is planned for achievement in March 2004. Once the BPEO has been identified the next stage will be to work up the applications for the authorisations that will be necessary to allow implementation of the BPEO. Any facilities needed will require planning permission from the appropriate planning authority. The planning application could be called in by a Minister of State or a planning inquiry convened. During this next stage attention will be paid to ensure all reports and submissions are consistent and compliant with regulations and possible future legal processes. Stakeholder dialogue will continue throughout this next stage moving on from disussion of options to the actual developments. The objective will be to resolve as many issues stakeholders might raise prior to the submissions of applications and prior to the regulators’ formal consultation procedures. This will allow early attention to those areas of concern. Beyond the submission of applications for authorisations it is unwise to speculate as nuclear decommissioning will be then organised in the UK in a different way. The Nuclear Decommissioning Authority will most probably be in overall control and, particularly for Dounreay, the Scottish Executive may have developed its policy for radioactive waste management in Scotland.


Author(s):  
Ellie Scourse ◽  
Hideki Kawamura ◽  
Ian G. McKinley

The early ’80s UK programme for deep geological disposal of high-level radioactive waste was advanced and at the stage of characterising potential sites. When this project was put on hold in the mid ’80s, much expertise in this field was lost. In Japan R&D in the ’80s resulted in major generic safety assessments to demonstrate feasibility in the ’90s. This led to the establishment of NUMO (Nuclear Waste Management Organization of Japan) and the initiation of siting based on volunteerism. This novel approach required more flexible methodology and tools for site characterisation, repository design and safety assessment. NUMO and supporting R&D organisations in Japan have invested much time and effort preparing for volunteers but, unfortunately, no discussions with potential host communities have yet developed to the point where technical work is initiated. Presently, the UK is moving forward; with the NDA RWMD (Nuclear Decommissioning Agency Radioactive Waste Management Directorate) adopting a NUMO-style volunteering approach and a flexible design catalogue. Communities have already shown interest in volunteering. The situation is thus ideal for collaboration. The paper will expand on the opportunities for the UK and Japan to benefit from an active collaboration and discuss how this can be most efficiently implemented.


2012 ◽  
Vol 76 (8) ◽  
pp. 3105-3114 ◽  
Author(s):  
S. Norris

AbstractThis paper gives an overview of the geosphere research studies being undertaken by the Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority. The approach of the RWMD in the current generic phase of the UK managing radioactive waste safely (MRWS) programme is to maintain an understanding of key processes and to carry out research and development into techniques so capability can be built. Although RWMD can demonstrate a general understanding of geosphere processes at this stage in the UK project, it is recognized that this will need to be made site-specific as the MRWS programme progresses. An understanding of the geosphere at the selected site(s) will be an important part of the future programme. Where possible, the RWMD will participate in international studies so that relevant site-based information can be accessed. In this way, the RWMD will be prepared for site-specific work in stage 5 of the MRWS process.


Author(s):  
Samantha King

Nirex is the organisation responsible for long-term radioactive waste management in the UK. Our mission is to provide the UK with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. Nirex is therefore researching various options for the long-term management of radioactive wastes/materials in order to identify the relevant issues with regard to the feasibility of options, and the research, development and stakeholder dialogue necessary to address these issues. The UK policy for the long-term management of solid radioactive waste is currently undergoing review. In September 2001, the UK Government Department for Environment, Food and Rural Affairs (Defra) and the Devolved Administrations for Scotland, Wales and Northern Ireland launched a public consultation on ‘Managing Radioactive Waste Safely’ (MRWS) [1]. The aim of this consultation was to start a process that will ultimately lead to the implementation of a publicly acceptable radioactive waste management policy. The MRWS programme of action proposed by Government includes a “stakeholder” programme of public debate backed by research to examine the different radioactive waste management options, and to recommend the preferred option, or combination of options. The options of storage above ground and underground are expected to be among the options examined. In the UK, radioactive wastes are currently held in surface stores, at over 30 locations in the UK, pending a decision on their long-term management. These stores were originally designed to have lifetimes of up to 50 years, but due to uncertainty regarding the longer term management of such wastes, extending the life of stores to 100 years is now being considered. This paper describes a preliminary scoping study to identify the long-term issues associated with surface storage of intermediate-level radioactive waste (ILW), and certain low-level waste (LLW) indefinitely in the UK. These wastes contain radionuclides with half lives that can range up to a million years or more, it was therefore assumed, for the purposes of this scoping study, that wastes would need to be managed over a period of at least one million years. An indefinite surface storage concept will require institutional stability and encompasses the principle of guardianship. It is based on a rolling present where each generation is required to monitor and, as necessary, repackage the waste and refurbish/replace storage buildings over a period of at least one million years. Each generation will also need to decide whether to continue with surface storage or implement another long-term management option. The aims of the scoping study were to: i) Investigate the implications of indefinite surface storage of waste packages through consideration of the facility specification, design and assessment. This framework is common to all Nirex radioactive waste management option studies, and provides a common basis for comparison. ii) Identify the social and ethical issues related to indefinite storage, including the principles and values that some stakeholders believe are met by the surface storage option.


Author(s):  
Simon Biggs ◽  
Michael Fairweather ◽  
James Young ◽  
Neil Hyatt ◽  
Francis Livens

Legacy waste treatment, storage and disposal, as well as decommissioning and site remediation, from the UK’s civil nuclear programme are estimated at a cost of £70B. Within the UK, the Nuclear Decommissioning Authority (NDA) directs the strategy for all civil nuclear decommissioning and demanding timescales have been set for remediation of all nuclear sites. Additionally, the Committee on Radioactive Waste Management (CoRWM) recently delivered a recommendation, accepted by Government, that geological disposal in a mined repository presents the “best available approach” for long term management of the waste legacy. There is therefore a requirement to decommission all power generation and experimental reactors, and fuel reprocessing plants, to decontaminate land, and to return nuclear licensed sites to brown or green field status. The engineering and scientific challenges that lie ahead in meeting these targets are significant, and many of the ideas required to deliver the final end state have not yet been researched. In recognition of this the UK Research Council’s Energy Programme released a call for research proposals in the area of nuclear waste management and decommissioning valued at £4M. A grant was subsequently awarded in 2008 to a consortium led by the University of Leeds, with member universities from Manchester, Imperial College, Sheffield, Loughborough and University College London. The DIAMOND (Decommissioning, Immobilisation And Management Of Nuclear Wastes For Disposal) consortium will undertake research aligned with the strategic priorities of the NDA and the CoRWM recommendations. Its primary purpose is to be adventurous and to deliver innovation. However, research is also being performed that will be of more immediate benefit to industrial stakeholders, with near-term impact achieved through the adoption of off-the-shelf technology currently implemented by other industries. Currently more than 20 industrial organisations are linked directly to the consortium. The aims of the consortium are to carry out internationally leading research in the areas of decommissioning and waste management that underpins the development of innovative and relevant technologies for industrial use. It will broaden the research base that focuses on relevant technologies, support new links within and between universities, promote multi-disciplinary collaboration and new applications of existing knowledge, and train the next generation of researchers to address a developing skills gap.


2012 ◽  
Vol 76 (8) ◽  
pp. 3271-3278 ◽  
Author(s):  
S. J. Williams

AbstractGases will be generated in waste packages during their transport to a geological disposal facility (GDF), this generation will continue during GDF operations and after GDF closure. The range of gases produced will include flammable, radioactive and chemotoxic species. These must be managed to ensure safety during transport and operations, and the post-closure consequences need to be understood. The two primary post-closure gas issues for a GDF are the need for the system pressure to remain below a value at which irreversible damage to the engineered barrier system and host geology could occur, and the need to ensure that any flux of gas (in particular gaseous radionuclides) to the biosphere does not result in unacceptable risk. This paper provides an overview of the research of the Nuclear Decommissioning Authority, Radioactive Waste Management Directorate into gas generation and its migration from a GDF.


Sign in / Sign up

Export Citation Format

Share Document