Development of Methodology to Construct a Generic Conceptual Model of River-Valley Evolution for Performance Assessment of HLW Geological Disposal

Author(s):  
Makoto Kawamura ◽  
Shin-ichi Tanikawa ◽  
Tadafumi Niizato ◽  
Ken-ichi Yasue

In order to assess the long-term safety of a geological disposal system for high-level radioactive waste (HLW), it is important to consider the impact of uplift and erosion, which cannot be precluded on a timescale in the order of several hundred thousand years for many locations in Japan. Geomorphic evolution, caused by uplift and erosion and coupled to climatic and sea-level changes, will impact the geological disposal system due to resulting spatial and temporal changes in the disposal environment. Degradation of HLW barrier performance will be particularly significant when the remnant repository structures near, and are eventually exposed at, the ground surface. In previous studies, fluvial erosion was identified as the key concern in most settings in Japan. Interpretation of the impact of the phenomena at relevant locations in Japan has led to development of a generic conceptual model which contains the features typical at middle reach of rivers. Here, therefore, we present a methodology for development of a generic conceptual model based on best current understanding of fluvial erosion in Japan, which identifies the simplifications and uncertainties involved and assesses their consequences in the context of repository performance.

2012 ◽  
Vol 76 (8) ◽  
pp. 2911-2918 ◽  
Author(s):  
G. Deissmann ◽  
S. Neumeier ◽  
G. Modolo ◽  
D. Bosbach

AbstractSeparated stocks of UK civil plutonium are currently held as a zero value asset in storage, as there is no final decision about whether they should be treated as a resource for future use as nuclear fuel or as waste. Irrespective of future UK government strategies regarding plutonium, at least a portion of the UK civil plutonium inventory will be designated for geological disposal. In this context, we performed a high-level review of the performance of potential wasteforms for the disposal of separated civil plutonium. The key issues considered were the durability and chemical reactivity of the wasteforms in aqueous environments and the long-term radionuclide release under conditions relevant to geological disposal. The major findings of the review, relevant not only to the situation in the UK but to plutonium disposal in general, are summarized in this paper. The review showed that, in the event of a decision being taken to declare plutonium as a waste for disposal, more systematic studies would be required to constrain the wasteform performance under repository conditions in order to derive realistic source terms for a safety case.


Author(s):  
Bruno Kursten ◽  
Frank Druyts ◽  
Pierre Van Iseghem

Abstract The current worldwide trend for the final disposal of conditioned high-level, medium-level and long-lived alpha-bearing radioactive waste focuses on deep geological disposal. During the geological disposal, the isolation between the radioactive waste and the environment (biosphere) is realised by the multibarrier principle, which is based on the complementary nature of the various natural and engineered barriers. One of the main engineered barriers is the metallic container (overpack) that encloses the conditioned waste. In Belgium, the Boom Clay sediment is being studied as a potential host rock formation for the final disposal of conditioned high-level radioactive waste (HLW) and spent fuel. Since the mid 1980’s, SCK•CEN has developed an extensive research programme aimed at evaluating the suitability of a wide variety of metallic materials as candidate overpack material for the disposal of HLW. A multiple experimental approach is applied consisting of i) in situ corrosion experiments, ii) electrochemical experiments (cyclic potentiodynamic polarisation measurements and monitoring the evolution of ECORR as a function of time), and iii) immersion experiments. The in situ corrosion experiments were performed in the underground research facility, the High Activity Disposal Experimental Site, or HADES, located in the Boom clay layer at a depth of 225 metres below ground level. These experiments aimed at predicting the long-term corrosion behaviour of various candidate container materials. It was believed that this could be realised by investigating the medium-term interactions between the container materials and the host formation. These experiments resulted in a change of reasoning at the national authorities concerning the choice of over-pack material from the corrosion-allowance material carbon steel towards corrosion-resistant materials such as stainless steels. The main arguments being the severe pitting corrosion during the aerobic period and the large amount of hydrogen gas generated during the subsequent anaerobic period. The in situ corrosion experiments however, did not allow to unequivocally quantify the corrosion of the various investigated candidate overpack materials. The main shortcoming was that they did not allow to experimentally separate the aerobic and anaerobic phase. This resulted in the elaboration of a new laboratory programme. Electrochemical corrosion experiments were designed to investigate the effect of a wide variety of parameters on the localised corrosion behaviour of candidate overpack materials: temperature, SO42−, Cl−, S2O32−, oxygen content (aerobic - anaerobic),… Three characteristic potentials can be derived from the cyclic potentiodynamic polarisation (CPP) curves: i) the open circuit potential, OCP, ii) the critical potential for pit nucleation, ENP, and iii) the protection potential, EPP. Monitoring the open circuit potential as a function of time in clay slurries, representative for the underground environment, provides us with a more reliable value for the corrosion potential, ECORR, under disposal conditions. The long-term corrosion behaviour of the candidate overpack materials can be established by comparing the value of ECORR relative to ENP and EPP (determined from the CPP-curves). The immersion tests were developed to complement the in situ experiments. These experiments aimed at determining the corrosion rate and to identify the corrosion processes that can occur during the aerobic and anaerobic period of the geological disposal. Also, some experiments were elaborated to study the effect of graphite on the corrosion behaviour of the candidate overpack materials.


2000 ◽  
Vol 37 (sup1) ◽  
pp. 310-315
Author(s):  
H Sawamura ◽  
K Nishimura ◽  
M Naito ◽  
T Ohi ◽  
Y Ishihara ◽  
...  

2017 ◽  
Vol 39 (5) ◽  
pp. 732-752 ◽  
Author(s):  
Lucía Muñoz-Pascual ◽  
Jesús Galende

Purpose The purpose of this paper is to analyze the influence that two variables related to human resources (HR) have on employee creativity – namely, knowledge management (KM) and motivation management (MM). Design/methodology/approach The linear regression analyses are based on a sample of 306 employees from 11 Spanish companies belonging to three innovative clusters. In addition, “creativity” is considered an antecedent of technological innovation. Findings KM and intrinsic MM are shown to inform creativity, whereas extrinsic MM has no such effect. Practical implications Although this study is based on cross-sectional data, the findings might induce researchers to investigate the effects of other HR variables, such as the types of relations between employees and their long-term impact on creativity. Management should encourage KM and intrinsic MM across employees, as the results indicate that tacit KM, explicit KM and intrinsic MM encourage a positive attitude toward creativity among employees. Originality/value The main contribution is new empirical evidence on the joint influence of aptitudes (KM) and attitudes (MM) on employee creativity. In addition, the study includes a key measure of employee creativity. The evidence reveals the types of KM and MM that encourage or inhibit creative employee behavior. The results show that once employees have reached a medium-high level of extrinsic MM, creativity will be affected solely by intrinsic MM.


2008 ◽  
Vol 2008 ◽  
pp. 1-18 ◽  
Author(s):  
E. Bomboni ◽  
N. Cerullo ◽  
G. Lomonaco ◽  
V. Romanello

This paper presents a critical review of the recent improvements in minimizing nuclear waste in terms of quantities, long-term activities, and radiotoxicities by innovative GCRs, with particular emphasis to the results obtained at the University of Pisa. Regarding these last items, in the frame of some EU projects (GCFR, PUMA, and RAPHAEL), we analyzed symbiotic fuel cycles coupling current LWRs with HTRs, finally closing the cycle by GCFRs. Particularly, we analyzed fertile-free and Pu-Th-based fuel in HTR: we improved plutonium exploitation also by optimizing Pu/Th ratios in the fuel loaded in an HTR. Then, we chose GCFRs to burn residual MA. We have started the calculations on simplified models, but we ended them using more “realistic” models of the reactors. In addition, we have added the GCFR multiple recycling option usingkeffcalculations for all the reactors. As a conclusion, we can state that, coupling HTR with GCFR, the geological disposal issues concerning high-level radiotoxicity of MA can be considerably reduced.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Jan Marivoet ◽  
Eef Weetjens

AbstractIn recent years the increasing oil prices and the need for carbon-free energy to limit global warming have resulted in a revival of interests in nuclear energy. Advanced nuclear fuel cycles are being studied worldwide. They aim at making more efficient use of the available resources, reducing the risk of proliferation of nuclear weapons, and facilitating the management of the resulting radioactive waste. Recently, the Red-Impact project has investigated the impact of a number of representative advanced fuel cycles on radioactive waste management, and more specific on geological disposal. The thermal output of the high-level waste arising from advanced fuel cycles in which all the actinides are recycled is reduced with a factor 3 for a 50 years cooling time and with a factor 5 for a 100 years cooling time in comparison with the spent fuel arising from the once-through fuel cycle. This reduction of the thermal output allows for a significant reduction of the length of the disposal galleries and of the size of the repository. Separation of Cs and Sr drastically reduces further the thermal output of the high-level waste, but it requires a long-term management of those heat generating separated waste streams, which contain the very long-lived 135Cs. Recycling all the actinides strongly reduces the radiotoxicity in the waste, resulting in significantly lower doses to an intruder in the case of a human intrusion into the repository. However, the reduction of radiotoxicity has little impact on the main safety indicator of a geological repository, i.e. the effective dose in the case of the expected evolution scenario; for disposal in clay formations, this dose is essentially due to mobile fission and activation products. The deployment of advanced fuel cycles will necessitate the development of low activation materials for the new nuclear facilities and fuels and of specific waste matrices to condition the high-level and medium-level waste streams that will arise from the advanced reprocessing plants.


Sign in / Sign up

Export Citation Format

Share Document