Behaviour of IPG Waste Forms Bearing BaSO4 as the Dominant Sludge Constituent Generated From the Treatment of Water Used for Cooling the Stricken Power Reactors

Author(s):  
Ippei Amamoto ◽  
Hidekazu Kobayashi ◽  
Takuma Yokozawa ◽  
Teruo Yamashita ◽  
Takayuki Nagai ◽  
...  

The great amount of water used for cooling the stricken power reactors at Fukushima Dai-ichi following the earthquake and tsunami of 11 March 2011 has resulted in accumulation of cooling water so-called the remaining water in some buildings. As the cooling water is subsequently contaminated by fission products (FPs) and some other radioactive substances, it is necessary to decontaminate this ‘cooling water’ to reduce the volume of liquid radioactive waste and to reuse it again for cooling the affected reactors. Some methods are applied to remove the radioactive substances from the cooling water. However, after treatments of water, there arises a secondary radioactive waste, the sludge. Steps are now taken to immobilize this sludge. In this paper, BaSO4, as one of main constituents of the sludge, was chosen as an immobilizing target substance. The appropriate manufacturing condition of glass waste form for loading the sludge (BaSO4) was studied and the chemical durability was evaluated by measuring the dissolution rate. For this experiment, the iron phosphate glass (IPG), which is known to possess a large loading capacity for a variety of chemical substances, was employed as the glass medium. Based on experimental results, it is evident that BaSO4 can be loaded into the IPG medium when it possesses the appropriate composition and melting temperature. During loading, BaSO4 converted into BaO, acting as a network modifier, which leads to enhanced stability of IPG.

2003 ◽  
Vol 807 ◽  
Author(s):  
T. Advocat ◽  
F. Jorion ◽  
T. Marcillat ◽  
G. Leturcq ◽  
X. Deschanels ◽  
...  

ABSTRACTZirconolite is a potential inorganic matrix that is currently investigated in France, in the framework of the 1991 radioactive waste management law, with a view to provide durable containment of the trivalent and tetravalent minor actinides like neptunium, curium, americium and small quantities of unrecyclable plutonium separated from other nuclear waste. To confirm the actinide loading capacity of the zirconolite calcium site and to study the physical and chemical stability of this type of ceramic when subjected to alpha self-irradiation, zirconolite ceramic pellets were fabricated with 10 wt% plutonium oxide (isotope 239 or 238). The 55 pellets are dense (> 93.3% of the theoretical density on average) and free of cracks. They are characterized by a grain size of between 10 and 20 micrometers. X-ray diffraction analyses confirmed the presence of the zirconolite 2M crystalline structure.


2012 ◽  
Vol 85 (1) ◽  
pp. 46-51 ◽  
Author(s):  
M. G. Ivanets ◽  
T. A. Savitskaya ◽  
D. D. Grinshpan ◽  
N. G. Tsygankova ◽  
A. E. Savkin

2021 ◽  
Vol 416 ◽  
pp. 125902
Author(s):  
Oleg A. Kononenko ◽  
Vitaly V. Milyutin ◽  
Vadim I. Makarenkov ◽  
Evgeny A. Kozlitin

2013 ◽  
Vol 28 (1) ◽  
pp. 18-24
Author(s):  
Sayedeh Mirmohammadi ◽  
Morteza Gharib ◽  
Parnian Ebrahimzadeh ◽  
Reza Amrollahi

A hot water layer system (HWLS) is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.


Sign in / Sign up

Export Citation Format

Share Document