A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube

Author(s):  
S. He ◽  
P. X. Jiang ◽  
Yi-Jun Xu ◽  
Run-Fu Shi ◽  
W. S. Kim ◽  
...  

Computational simulations of experiments on turbulent convection heat transfer of carbon dioxide at supercritical pressures in a vertical tube of diameter 0.948 mm have been carried out using low-Reynolds number eddy viscosity turbulence models. The simulations were able to reproduce the general features exhibited in the experiments. The modelling study has provided valuable information on the detailed flow and turbulence fields. It has been shown that for mini tubes such as the one used in the current study, the buoyancy effect is generally insignificant. Heat transfer can be significantly impaired when the heating is strong. This is due to the reduced turbulence production, induced by the flow acceleration which is in turn caused by strong heating.

Author(s):  
Chen-Ru Zhao ◽  
Zhen Zhang ◽  
Qian-Feng Liu ◽  
Han-Liang Bo ◽  
Pei-Xue Jiang

Numerical investigations are performed on the convection heat transfer of supercritical pressure fluid flowing through vertical mini tube with inner diameter of 0.27 mm and inlet Reynolds number of 1900 under various heat fluxes conditions using low Reynolds number k-ε turbulence models due to LB (Lam and Bremhorst), LS (Launder and Sharma) and V2F (v2-f). The predictions are compared with the corresponding experimentally measured values. The prediction ability of various low Reynolds number k-ε turbulence models under deteriorated heat transfer conditions induced by combinations of buoyancy and flow acceleration effects are evaluated. Results show that all the three models give fairly good predictions of local wall temperature variations in conditions with relatively high inlet Reynolds number. For cases with relatively low inlet Reynolds number, V2F model is able to capture the general trends of deteriorated heat transfer when the heat flux is relatively low. However, the LS and V2F models exaggerate the flow acceleration effect when the heat flux increases, while the LB model produces qualitative predictions, but further improvements are still needed for quantitative prediction. Based on the detailed flow and heat transfer information generated by simulation, a better understanding of the mechanism of heat transfer deterioration is obtained. Results show that the redistribution of flow field induced by the buoyancy and flow acceleration effects are main factors leading to the heat transfer deterioration.


Author(s):  
Pei-Xue Jiang ◽  
Zhi-Hui Li ◽  
Chen-Ru Zhao

This paper presents the experimental and numerical investigation results of the convection heat transfer of CO2 at supercritical pressures in a 0.0992 mm diameter vertical tube at various inlet Reynolds numbers, heat fluxes and flow directions. The effects of buoyancy and flow acceleration resulted from the dramatic properties variation were investigated. Results showed that the local wall temperature varied non-linearly for both upward and downward flow when the heat flux was high. The difference of the local wall temperature between upward flow and downward flow was very small when other test conditions were held the same, which indicates that for supercritical CO2 flowing in a mini tube as employed in this study, the buoyancy effect on the convection heat transfer was quite insignificant, and the flow acceleration induced by the axial density variation with temperature was the main factor that lead to the abnormal local wall temperature distribution at high heat fluxes. The predicted values using the LB low Reynolds number turbulence model correspond well with the measured data. Velocity profiles and turbulence kinetic energy near the wall varying along the tube generated by the numerical simulations were presented to develop a better understanding.


Author(s):  
W S Kim ◽  
J D Jackson ◽  
S He ◽  
J Li

The study reported here is concerned with mixed convection heat transfer to air flowing upwards in a vertical tube. Computational simulations of experiments from a recent investigation have been performed using an ‘in-house’ code which was written specifically for variable-property, developing, buoyancy-influenced flow and heat transfer in a vertical passage. The code incorporates a selection of two-equation, low Reynolds number turbulence models. The objective of the study was to evaluate the models in terms of their capability of reproducing the effects on turbulent heat transfer of non-uniformity of fluid properties and buoyancy. Direct comparisons have been made between results from the experimental investigation and those obtained by computational modelling for a range of conditions. The trends of impairment and enhancement of heat transfer owing to the influence of buoyancy found in the experiments were captured to some extent in the simulations using each of the models. However, none reproduced observed behaviour correctly over the entire range of buoyancy influence.


Author(s):  
Pei-Xue Jiang ◽  
Rui-Na Xu ◽  
Zhi-Hui Li ◽  
Chen-Ru Zhao

The convection heat transfer of CO2 at supercritical pressures in a 0.0992 mm diameter vertical tube at relatively high Reynolds numbers (Rein = 6500), various heat fluxes and flow directions are investigated experimentally and numerically. The effects of buoyancy and flow acceleration resulting from the dramatic property variations are studied. The Results show that the local wall temperature varied non-linearly for both upward and downward flow when the heat flux was high. The difference in the local wall temperature between upward and downward flow is very small when the other test conditions are held the same, which indicates that for supercritical CO2 flowing in a micro tube as employed in this study, the buoyancy effect on the convection heat transfer is insignificant and the flow acceleration induced by the axial density variation with temperature is the main factor leading to the abnormal local wall temperature distribution at high heat fluxes. The predicted temperatures using the LB low Reynolds number turbulence model correspond well with the measured data. To further study the influence of flow acceleration on the convection heat transfer, air is also used as the working fluid to numerically investigate the fluid flow and heat transfer in the vertical micro tube. The results show that the effect of compressibility on the fluid flow and heat transfer of air in the vertical micro tube is significant but that the influence of thermal flow acceleration on convection heat transfer of air in a vertical micro tube is insignificant.


Author(s):  
Chen-Ru Zhao ◽  
Zhen Zhang ◽  
Han-Liang Bo ◽  
Pei-Xue Jiang

Investigations and numerical modelling are performed on the heat transfer to CO2 at supercritical pressure under buoyancy affected conditions during heating in a vertical tube with inner diameter of 2 mm. Numerical modelling are carried out using several low Reynolds number (LRN) k-ε models, including the model due to Launder and Sharma (LS), Abe, Kondoh and Nagano (AKN), Myong and Kasagi (MK) models. The numerical results are compared with the corresponding experimental data and the predicted values using the semi-empirical correlation for convection heat transfer of supercritical fluids without deterioration. The abilities of various LRN models to predict the heat transfer to fluids at supercritical pressures under normal and buoyancy affected heat transfer conditions are evaluated. Detailed information related to the flow and turbulence is presented to get better understanding of the mechanism of the heat transfer deterioration due to buoyancy, as well as the different behavior of various LRN turbulence models in responding to the buoyancy effect, which gives clues in future model improvement and development to predict the buoyancy affected heat transfer more precisely and in a broader range of conditions as they come to be used to simulate the flow and heat transfer in various applications such as in the supercritical pressure water-cooled reactor (SCWR) and the supercritical pressure steam generator in the high temperature gas cooled reactor (HTR).


Sign in / Sign up

Export Citation Format

Share Document