Simulation of Microfluidic Flow Using Ferrofluids

Author(s):  
Akshay C. Gunde ◽  
Sushanta K. Mitra

Present day microfluidics widely uses electrokinetic effects like eletrosmosis and electrophoresis to achieve flow control. These methods require extensive micromachining processes. Also, the fabrication of valves and valve-seats is difficult, which frequently leads to leakages and eventual breakdown of the system. This paper introduces the use of ferrofluids as an alternative for flow control in microchannels. Numerical simulation of flow through a microchannel using a ferrofluid in the presence of an external magnetic field is performed by coupling the flow and magnetic phenomena. An additional term calculated from the ferrofluid magnetization equations, is introduced in the Navier-Stokes equations to account for the magnetic force. The maximum velocity in a magnetically driven flow is shown to be a linear function of magnitude of magnetization of the permanent magnet. Further, the insertion of micron-size magnetic particles (referred here as magnetic plugs) in the flow field has been discussed. These plugs can be used to provide appropriate barriers to the flow by controlling their movement externally. Using the combination of ferrofluid and magnetic plugs, flow control can be achieved by the variation of external magnetic field alone.

2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Vol 17 ◽  
Author(s):  
B. Kanimozhi ◽  
M. Muthtamilselvan ◽  
Qasem M. Al-Mdallal ◽  
Bahaaeldin Abdalla

Background: This article numerically examines the effect of buoyancy and Marangoni convection in a porous enclosure formed by two concentric cylinders filled with Ag-MgO water hybrid nanofluid. The inner wall of the cavity is maintained at a hot temperature and the outer vertical wall is considered to be cold. The adiabatic condition is assumed for other two boundaries. The effect of magnetic field is considered in radial and axial directions. The Brinkman-extended Darcy model has been adopted in the governing equations. Methods: The finite difference scheme is employed to work out the governing Navier-Stokes equations. The numerically simulated outputs are deliberated in terms of isotherms, streamlines, velocityand average Nusselt number profiles for numerous governing parameters. Results: Except for a greater magnitude of axial magnetic field, our results suggest that the rate of thermal transport accelerates as the nanoparticle volume fraction grows.Also, it is observed that there is an escalation in the profile of average Nusselt numberwith an enhancement in Marangoni number. Conclusion: Furthermore, the suppression of heat and fluid flow in the tall annulus is mainly due to the radial magnetic field whereas in shallow annulus, the axial magnetic field profoundly affects the flow field and thermal transfer.


2018 ◽  
Vol 26 (2) ◽  
pp. 267-283
Author(s):  
M. Tezer-Sezgin ◽  
Merve Gürbüz

Abstract We consider the steady, laminar, convection ow in a long channel of 2D rectangular constricted cross-section under the inuence of an applied magnetic field. The Navier-Stokes equations including Lorentz and buoyancy forces are coupled with the temperature equation and are solved by using linear radial basis function (RBF) approximations in terms of the velocity, pressure and the temperature of the fluid. RBFs are used in the approximation of the particular solution which becomes also the approximate solution of the problem. Results are obtained for several values of Grashof number (Gr), Hartmann number (M) and the constriction ratios (CR) to see the effects on the ow and isotherms for fixed values of Reynolds number and Prandtl number. As M increases, the ow is flattened. An increase in Gr increases the magnitude of the ow in the channel. Isolines undergo an inversion at the center of the channel indicating convection dominance due to the strong buoyancy force, but this inversion is retarded with the increase in the strength of the applied magnetic field. When both Hartmann number and constriction ratio are increased, ow is divided into more loops symmetrically with respect to the axes.


Author(s):  
Arash Karimipour ◽  
Masoud Afrand

Forced convection of water–Cu nanofluid in a two-dimensional microchannel is studied numerically. The microchannel wall is divided into three parts. The entry and exit ones are kept insulated while the middle one has more temperature than the inlet fluid. The whole of microchannel is under the influence of a magnetic field with uniform strength of B0. Slip velocity and temperature jump are involved along the microchannel walls for different values of slip coefficient such as B = 0.001, B = 0.01, and B = 0.1 for Re = 10, Re = 50, and Re = 100. Navier–Stokes equations are discretized and numerically solved by a developed computer code in FORTRAN. Results are presented as the velocity, temperature, and Nusselt number profiles. Moreover, the effect of magnetic field on slip velocity and temperature jump is investigated for the first time in the present work. Larger Hartmann number, Reynolds number, and volume fraction correspond to more heat transfer rate; however, the effects of Ha and ϕ are more significant at higher Re.


2011 ◽  
Vol 403-408 ◽  
pp. 663-669 ◽  
Author(s):  
Azadeh Shahidian ◽  
Majid Ghassemi ◽  
Rafat Mohammadi

A Magnetohydrodynamic pump uses the Lorentz effect. It is based on the injection of an electric field into two electrodes located at facing side walls of a channel. The purpose of this study is to numerically investigate the effect of Nanofluid properties on the flow field as well as the temperature distribution in a MHD pump. To solve the non-linear governing differential equations, a finite difference based code is developed and utilized. The temperature and velocity are calculated by solving the energy and Navier-Stokes equations. Result shows that temperature stays almost constant with magnetic field. Furthermore velocity and temperature behaviours are similar for each period. However heat transfer inside the MHD pump varies with nanofluid (NaCl solution and Al2O3 nanoparticles) in comparison with the NaCl solution.


2014 ◽  
Vol 635-637 ◽  
pp. 26-30
Author(s):  
Jun Jie Tong ◽  
Yun Hui Fang

The FLUENT6.3 software is applied to simulate the supersonic flow in micro convergent-divergent nozzle. The simulation is complemented by computing steady 2-D Navier-stokes equations to analyze the pressure contour and velocity contour inside the micro nozzle which has straight exit section or not and the length of straight exit section l. Also the performances of fluent mass coefficients and thrust force efficiencies are studied. The numerical results show: That the nozzle has straight exit section or not and the section length l affect the pressure contour and velocity contour inside the thruster. Compared to the nozzle that has no straight exit section, the minimum pressure region and the maximum velocity region are close to the center of exit in the nozzle that has straight exit section. Also the affected region is increased. When the throat Reynolds number Re is small, the flow coefficient Cd and thrust coefficient ηF firstly increase then decrease with the increase of l.


Sign in / Sign up

Export Citation Format

Share Document